
BLAISE PASCAL MAGAZINE

COMPUTER & MATH
 IN GAMES PASCAL

DAVID DIRKSE

www.blaisepascal.eu

procedure ;
var
begin
 := for toi 1 9
do
 begin

Detlef
Typewritten Text
PREVIEW

Detlef
Typewritten Text
PREVIEW

Detlef
Typewritten Text

COMPUTER & MATH
 IN GAMES PASCAL

II

Foreword
At young age I wondered how on earth machines could make calculations because in
my view this required intelligence.
The first step to see the light was a study in electrical engineering. The second step
was joining CDC, an American computer company, and installing number crunching
mainframes at scientific institutes for the next 25 years.

Some years before that period passed, it became clear that CDC was passed by its
competitors and contracts were likely to end.
What to do?
Besides installing computers and fixing hardware problems I had attended over a
hundred courses and had been an instructor in about 30 occasions.
Also I had witnessed several presentations by scientists who had used “my”
machines. In most cases I did not understand the math and since my question how
computers make calculations was sufficiently answered I decided to enter a new field
and become a math teacher.
Back to college for four years of evening classes. Just in time.

Meanwhile new quests showed up. How to draw the graphics of a mathematical
function on a computer screen?
How does a computer calculate the best move in a game?
How can a computer solve a puzzle?
With CDC I programmed machine code, sometimes assembler language, which was
adequate to diagnose and repair hardware failures.
At a computer dump store I bought Delphi-3 for self-study. I also joined the Dutch
Delphi community, which later published so many of my projects.

The future once predicted did not come true. In the early days of computers
futurologists envisioned the year 2000 with mankind passing time singing and
dancing while robotized factories were taking care of our material needs.
Another prediction was that complex computers would only be part-time operational.
Such extremely complex machines were destined to be stuck in an undefined state
most of the time.
In the seventies a Dutch scientific institute declared that academic research in micro-
electronics was useless.

The present was not foreseen. The supercomputer of the eighties that occupied the
space of a tennis court, fits now on my desk. It was a bargain at the local supermarket.
The internet allows for worldwide sharing of knowledge and information.
Everybody is its own publisher.

The year 2000 long past and retired for six years. I don't sing and dance.
I program and balance this sedentary work by walks in the nearby dunes and along
the beach. Once a year I take a break for a walking tour abroad, preferably the UK.
For the cultural side of my life I attend baroque concerts.

Detlef
Typewritten Text

COMPUTER & MATH
 IN GAMES PASCAL

III

About calculations and machines I changed my mind. At second thought calculations
have little to do with intelligence. Leave the arithmetic to machines, which are much
quicker than humans in this respect. Intelligence is the ability to learn and also to
understand and to discover and to design structures.

Manufacturers of beachwear recommend their products as: “made with only you in
mind”.
Some projects in this book indeed were made with my former students in mind. But
in most cases it was solely my personal interest, the challenge to solve a problem.
I realize that I reinvented the wheel in many cases. As a hobbyist I am permitted to do
so.

Plane geometry is nice for the study of mathematics because it combines analytic
reasoning with algebraic calculations. From secondary school I remember my
struggles with this subject. Maybe for this reason the book contains many pages of
geometry.

A glance at history emphasizes our great world. For the first time at least part of
mankind lives a free and prosperous life with a broad education system and vast
cultural life from football stadiums to concert halls. We own this to science,
technology and abundant cheap energy.

Our society embraces new products rather quickly. However there is far less interest
in the underlying technology. But designing technology is a creative process just as
finger painting of course.
For myself I look in amazement to our magical world and I count my blessings.
Also I am sure there must be numerous other people with interest in technology and
who eagerly want to participate in the preservation of our society and shaping the
future.
Despite some sleepless nights when problems refused to rest, I have written this book
with great pleasure which I hope to share with my readers.

David E. Dirkse
August 2, 2015

the Netherlands

Developmental Editor: Detlef Overbeek
Production Editor: Detlef Overbeek
Technical Editor: Peter Bijlsma
Proofreaders: Peter Bijlsma, Rik Smit,
Cover Designer: Detlef Overbeek

All rights reserved by Blaise Pascal Magazine
Pro Pascal Foundation -Stichting Ondersteuning Programeertaal Pascal
Edelstenenbaan 21 3402 XA IJsselstein Netherlands

Blaise Pascal Magazine grants readers limited permission to reuse the code found in
this publication so long as the author(s) are attributed in any application containing
the reusable code and the code itself is never distributed, posted online by electronic
transmission, sold, or commercially exploited as a stand-alone product.
Aside from this specific exception concerning reusable code, no part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any
way, including but not limited to photocopy, photograph, magnetic, or other record,
without the prior agreement and written permission of the publisher.

This edition is registered by the Nederlandse Koninklijke Bibliotheek

Office@blaisepascal.eu http://www.blaisepascalmagazine.eu

ISBN: 97 89 49 09 68 106

Blaise Pascal Magazine and the Blaise Pascal Magazine logo are either registered
trademarks or trademarks of the Pro Pascal Foundation in the Netherlands and/or
other countries.

TRADEMARKS: Blaise Pascal Magazine has attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The authors and publisher have used their best efforts in producing this book, whose
content is based on the latest software releases wherever possible. Portions of the
manuscript may be based upon pre-release versions supplied by software
manufacturer(s).

The authors and the publisher make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accept no liability of
any kind including but not limited to performance, merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or alleged to be
caused directly or indirectly from this book.

COMPUTER & MATH
 IN GAMES PASCAL

IV

 PageGames
 1 Tic-tac-toe (3D) Discover the winning strategy 3
 2 Match5 A self-learning board game 4
 3 Colorstacks Logistic puzzle with 7 levels 12
 4 SHIFT The most difficult puzzle in the world 13
 5 Jumping Goats Puzzle for all ages 14
 6 Connect4 Single player, 8 levels, board game with analysis 15
 7 Nim 9 Strategic board games, easy to difficult 16
 8 Solitaire Single player puzzles 25
 9 Sudoku Helper - Solver Select the desired amount of help 26

 General
 10 Energy Storage Systems Dependency on oil 28
 11 Green Lies: the windfarm fallacy The project costs 3 billion euro's and will provide 33
 785,000 households with electrical energy
 12 Taking a break Wildrooster crossing 35
 Why I love the UK 36

 Math
 13 The Pythagoras theorem Four very different proofs 37
 14 The crazy circle illusion Geometry 39
 15 The bookmark problem Geometry, algebra 41
 16 Turning Radius calculation Car or bicycle turning circle diameter 44
 17 Introduction to Boolean Algebra Learn about AND,OR,NOT...plus examples 45
 18 Compasses and ruler Basic geometry constructions 53
 constructions
 19 Regular Pentagon construction Ruler & compass construction with theory 65
 20 Fraction ranking Calculate the rank of a fraction 67
 21 Geometry puzzle Analytic reasoning 68
 22 Paint Lissajous curves Graphics-Explorer makes Lissajous curves move 69
 23 Linear Regression Find the best fitting line through a set of points 72
 24 The Least Squares method Find the best polynomial through a set of points 73
 25 Geoproofs Geometric proofs of trigonometric identities 75
 26 Geocalc Some calculations in plane geometry 77

 27 PI () calculation Calculate using pencil and paper 83

 28 Triangles and Sides Can these lines form a triangle? 86
 29 Calculate square root Using pencil and paper 88
 30 How to solve Ax + By = C
 for integers The math behind program Euclid 91
 31 The Ultimate Gutter The best gutter dimensions 95

 Freeware
 32 Computer art Painting 3D Lissajous graphics 97
 33 Logic10: Boolean Algebra Generate and Reduce Truth Tables 99
 34 Prime Number Generator generate list of primes 108
 35 Polygon Overlap Calculator Calculate area of overlapping polygons 110
 36 Graphics-Explorer Plot, print, explore equations and functions 111
 37 Euclid Solve Ax + By = C for integers 115
 38 ChrCode Show characters and codes 116
 39 Factors Factorize numbers, calculate gcd 117
 40 FontTest Shows how Windows renders characters 118
 on the screen
 41 KeyStroke Shows the generated key codes 119
 42 LinEq Solve systems of linear equations 120
 43 Numbers Convert number systems 121
 44 Pinwheel Operate a vintage mechanical calculator 122
 45 Ranks Calculate the rank of a combination, 123
 permutation or partition

CONTENTS

COMPUTER & MATH
 IN GAMES PASCAL
C
G1

COMPUTER & MATH
 IN GAMES PASCAL
C
G2

Delphi programming Page

46 Programming 3D graphics Computer art with 3D Lissajous graphics 127
47 Programming the tic-tac-toe game Includes analysis algorithm description 135
48 Rotation of bitmaps Theory, source code and exerciser program 148
49 Programming
 Truth Table Reduction Application of Boolean Algebra 152
50 Absolute function examples Save if statements when setting 160
 boundaries of variables
51 Tree graph operations with undo Description, listing, complete project, 163
 new version 5
52 drawing techniques, part 1 Modifying pixels in a bitmap 172
53 drawing techniques, part 2 Drawing dots and lines: the XBitmap class 177
54 drawing techniques, part 3 Flicker free painting 184
55 drawing techniques, part 4 Drawing circles and ellipses 193
56 Encryption Simple character string encryption 198
57 Sudoku Programming the Sudoku helper-solver 200
58 Programming techniques part 1 Use of the "absolute" (abs) function 208
59 Programming techniques part 2 Programming complex loops 210
60 Programming techniques part 3 Controlling a board game 212
61 Programming techniques part 4 Filtering characters for names or passwords 215
62 Programming techniques part 5 While .. do .. loops to search arrays 216
63 Programming techniques part 6 Step by step program execution 217
64 Programming techniques part 7 Reading and writing bitstrings from/to a buffer 220
65 Color Mixer Simple component for dialog forms 222
66 Color Dialog Color dialog form with history 223
 using the colormixer
67 Peg-Solitaire puzzle How to program the search for solutions 225
68 SHIFT puzzle How to program the search for solutions 234
69 Freehand drawing Generate and store hand drawn images 240
70 The Xfont project Create your own font 243
71 The Xfont class Implementation of the XFont project 254
72 The Xbitmap class Add many new painting features to a bitmap 259
73 A microseconds counter Count program execution times 265
 with nanosecond accuracy
74 A simple component for
 color selection Quick and simple color picker 271
75 An arraybutton component Organise menu buttons as one-
 or two dimensional array 273
76 3D spheres generator Paint / save 3D spheres in different colors 276

77 Educational game - programming part 279Programming Leap Frog

Ict - algorithms
78 Floating Point numbers Explore floating point formats 282
79 Image compression Compresses .bmp files,
 for photos better than .gif 285
80 Exponential Curve Fitting How Graphics-Explorer
 builds exponential functions 295
81 Polygon Triangulation How to dissect a complex polygon
 into triangles 301
82 The direction of a vector Obtain the direction of a line in degrees 311
83 A Connect4 search algorithm How the computer calculates the best move 313
84 Bitmap resizing Enlarge or reduce digital images 322
85 Non recursive floodfill Floodfill any shape 329
86 Formula translation Break down a math formula into
 basic operations 333

Plot different type of functions 34387 Equation Grapher description

CHAPTER 1 - GAMES

Figure 1a: 3D Tic-Tac-Toe in progress

A single player may try to find the best
strategy.

There are three buttons:
 - cube: new game
 - arrow: take move back
 - lamp: analyse board state

Analysis displays the result of a move
in each field.
W3 means : winning in 3 moves.
L5 means : losing in 5 moves.

Figure 1b: 3D Tic-Tac-Toe done

Here you see a 3 dimensional tic-tac-
toe game. One in progress one done.
It is a two-player version, written for
Windows computers.

Winner is the one who is the first to
place three adjacent O or X characters
horizontal, vertical or diagonal.
See figure 1

Introduction

COMPUTER & MATH
 IN GAMES PASCAL
C
G

 THE TIC-TAC-TOE 3D PAGE 1/1

You can download the
accompanying files:
ttt-3d.exe code

The complete project and code is
available at chapter: 47

C
H

A
P

T
E
R

 1
 -

 G
A

M
E
S

3

 T

H
E
 T

I
C

-T
A

C
-T

O
E
 3

D

4

Introduction
Match5 is a board game.
It may be played in two modes: 1.
player against computer, 2. player
against player.
The computer is self-learning. In
case of a loss, the board state is
archived to avoid the same error a
second time. Each time the player
wins, it becomes a bit harder to win
again.
Actually, the player competes with
him/her self.

The game
The board counts 9 x 9 fields. A field
may hold a red or a blue ball. The
computer plays with , the player red
with . Alternately they place a ball blue
of their color in an empty field. Winner
is the first to place a horizontal, vertical
or diagonal row of five balls of his
color. Look at the picture below, where
the computer plays red and the player
blue.
It is clear that the computer still has
zero knowledge and is beaten easily by
blue.

Figure 1: Match5

COMPUTER & MATH
 IN GAMES PASCAL
C
G

MATCH5,
A SELF LEARNING GAME

CHAPTER 2 - GAMES PAGE 1/8

M
A

T
C

H
5

,
A

 S
E
L
F
 L

E
A

R
N

IN
G

 G
A

M
E

C
H

A
P

T
E
R

 2
 -

 G
A

M
E
S

12

CHAPTER 3 - GAMES PAGE 1/1 COLORSTACKS

Introduction
Colorstacks is a logistic puzzle with 7 levels. The game consists of columns with colored
blocks. The lowest block depicts the color of the column. This block is fixed.
The other blocks may move, one or two at the time, to another column. Rule is that only
blocks of the same color may rest on each other. In the starting position a column only
contains blocks of "foreign" colors. In the final, solved, position each column only contains
blocks of its own color.

C
H

A
P

T
E
R

 3
 -

 G
A

M
E
S

Information

The program has in-line help information.
It is written for Windows in the Delphi (7)
programming language. There is no
installation procedure: simply copy
colorstacks.exe to a directory of choice.

The search algorithm

I do not know of an analytical approach of
this puzzle. But I feel that there must be
one. The computer uses the "brute force"
(systematically try all move sequences)
method to find solutions.

To limit the search time however, a
number of tricks are applied to avoid
redundant work. Solutions of levels 1..6
are found by the computer in (milli)
seconds. For level 7 however I feel that the
shortest solution has not yet been found.

Options

• search for solutions

• move blocks using
 the mouse

• take moves back

• restore game to
 starting position

• replay earlier
 solutions

• have the computer
 search for solutions

• save a solution on
 disc

• open a solution
 from disc

• print a solution

Figure 2: starting position of level 3

Figure 3: solution of level 3

Figure 1: The program in progress

COMPUTER & MATH
 IN GAMES PASCAL
C
G

You can download the accompanying
files: colorstacks.exe

The complete project and code is
available for download colorstacks.zip

 C

O
L
O

R
S

T
A

C
K

S

C
H

A
P

T
E
R

 4
 -

 G
A

M
E
S

13

CHAPTER 4 - GAMES PAGE 1/1 SHIFT

 S

H
I
F
T

Introduction
"SHIFT" is a very difficult puzzle, unsolvable at first glance. Not invented by
myself, but found on the web where is was called "the most difficult puzzle in the
world". To solve the puzzle using mouse or keyboard, I wrote this Delphi-7
program. Also the program can search for solutions in case the user gets tired
trying. Below are pictured two (half size) screenshots. The left is the original- and
the right is a possible solved board state.

Figure 1: Original board state Figure 2: A possible solved board state

Figure 3

The puzzle consists of a board having
4 x 5 fields. Blocks of size 1x1, 2x1, 1x2,
or 2x2 are shifted until the red 2x2 block
occupies the the fields at the bottom
center. The position of the other blue
blocks is not important.

This SHIFT program has the following
options:
• find solutions yourself
 (use mouse or keyboard to move.
 Moves can be taken back)
• replay previous moves
• have the computer search for solutions
• save moves on disc
• open moves from disk
• print moves including picture of
 initial- and final board state
• In-Line help information

I unveil that a solution counts over 100 -
but less than 200 moves (the solution in the
screenshot is not he shortest one).

COMPUTER & MATH
 IN GAMES PASCAL
C
G

You can download the
accompanying files: shift.exe
For the code see chapter 68

Some websites
have an on-line
version of SHIFT,
but the primitive
user interface is
very frustrating.

You can download the
accompanying files: goats.exe
goats.zip

14

Rules

- a goat may jump forward one or two places to an open spot
- a puzzle is solved if the goats have changed place.

And below is a solved game:

The game may be played using mouse or
keyboard.

Mouse
• click on goat that has to jump
• click on right bottom button to restart
 or progress to next level.
• click on button several times to go
 back to a previous level

Figure 1: Gameplay start

Figure 2: Gameplay finished

CHAPTER 5 - GAMES JUMPING GOATS

C
H

A
P

T
E
R

 5
 -

 G
A

M
E
S

J
U

M
P

I
N

G
 G

O
A

T
S

Introduction
"Jumping Goats" is a 3 - level puzzle
for all ages. Below is a reduced picture
of the start for level - 3:

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/1

INTRODUCTION
This connect4 game has 8 levels and 8
strategies.
In “analyse” mode the program per
move calculates the result:
win or lose in .. moves.
Also there is a Hall-of-Fame.

The Game

Figure 1: A new gameplay

My version of CONNECT4 is single
player, you play against the computer.
The board has 9 columns and 7 rows,
resulting in 63 fields.
Computer and player alternately place a
ball of their color in a field. The computer
always plays with red, the player with
blue. The columns are filled bottom-up,
so the balls are actually dropped down a
column. The winner is the first to achieve
a horizontal,vertical or diagonal line of 4
balls of his color.

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 6 - GAMES CONNECT 4

C
H

A
P

T
E
R

 6
 -

 G
A

M
E
S

C

O
N

N
E
C

T
 4

PAGE 1/9

15

You can download the
accompanying files: connect4.exe

For the code see chapter 83 page
page 313

16

Move by removing an arbitrary number of blocks from a
column. The winner removes the last block(s)
Score 1 point per game

CHAPTER 7 - GAMES NIM GAMES 1

C
H

A
P

T
E
R

 7
 -

 G
A

M
E
S

N

I
M

 G
A

M
E
S

 1

Introduction
Nim games are a category of board
games that may look very different,
but the math behind is the same.
The following characteristics are shared
・ finite number of moves
・ always ends with winner and loser
・ winner is the player that first
 reaches the final board state
・ each board state is either good or
 bad

PAGE 1/9

COMPUTER & MATH
 IN GAMES PASCAL
C
G

About these Nim games

This program offers 9 Nim games: from
easy (1) to difficult (9).
They are all single player versions, but
the player can defeat the computer in
every game.

When the mathematics are understood, a
board state may be analysed as "good" or
"bad". A "bad" board state has a
 connection to a
 "good“
 board state.
 A "good" board state
 only has connections
 to "bad" board states.
 T he goal is to unveil
 the similarity
 between the games
 and to find a
 winning strategy.
 B elow are pictures of
 the various Nim -
 games
 (reduced images) .

17

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 2/9CHAPTER 7 - GAMES NIM GAMES 1

Installation

Nim9 is written in the Delphi programming language and for all Windows versions.
Nim9 ships as a single .exe file. There is no installation procedure. Simply copy Nim9

to a directory of choice. The program has In-Line help.

18

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 3/9CHAPTER 7 - GAMES NIM GAMES 1

COMMON CHARACTERISTICS:

• there are two players

• there are a finite number of moves

• each game ends with a winning player

• there is no luck or chance : a game state
 is either a winning or a losing one

Also may be noted:

• a game position is “good” or “bad”.
 The final position is “good” of course.

• from a “bad” position there exists a
 move to a “good” position.

• from a “good” position no move exists
 to a next “good” position.

The name Nim was introduced by the
Canadian mathematician Charles L.
Bouton, which analysed the versions 1..8
of the Nim games in the year 1902.
The analysis of game number 9 was
realized much later, in 1937, by the
German mathematician Roland Sprague
and some years later, independently, by
P.M.Grundy.

A QUICK SURVEY

Please look at Nim game 2.

Goal is to shift the coin to the green field
at the left bottom.
A move may shift the coin left or down
by any number of fields (but not both).
The final state (0,0) is “good”.
As a consequence, any position after a
backward move originating in field (0,0)
is “wrong”.
The column above (0,0) and the row right
of (0,0) may by all marked wrong (red
dot).
The nearest “good” position is (1,1),
marked green. Above and right of (1,1)
fields must be marked “wrong”. And so
on, see figure 1. right.

The winner is the first to place the coin
on a green field. If the starting position is
green, then have the computer do the
first move. Figure 2 shows the similarity
between games 1 and 2.

Note: “spel” is Dutch for “game”.
In game 1 we remove squares from a
chosen pile, in game 1 we “remove” a
number of horizontal or vertical fields.
Game 1 is won by the player who makes
the columns equal.

Nim game 3

Here, the coin may move as well
diagonally in the left-down direction.
This makes the up-right diagonal fields
starting at a good field all wrong.
See figure 3.

Introduction
This article explains the math behind
Nim games.

Figure 1.

Figure 2.

You can download the accompanying
files: solitaire.exe

For the code see chapter 67 page 225

C
H

A
P

T
E
R

 8
 -

 G
A

M
E
S

P

E
G

 S
O

L
I
T
A

I
R

E

25

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Installation
Platform : all windows versions.
There is no installation procedure:
simply copy the program to a directory
of choice.
The windows registry is not changed.

CHAPTER 8 GAME PEG SOLITAIRE

Introduction

Figure 1: Initial board state

Figure 2: Final solution

Peg Solitaire is a single player puzzle.

The board consists of holes (33) and pegs
(initially 32). The center position only is
open. The final, solved, state has left 1 peg
in the center position when 31 moves have
striked the other pegs.
A move takes a peg over its neigbour
(horizontally or vertically) to an empty hole.
The peg that was jumped over is removed
from the game. See the picture below for a
reduced image of an initial- and a solved
game:

Program Options
play search for solutions
replay replay previous moves or
 solution
search have computer search for
 solutions
place place balls at board to create
 starting position for search
select select 1 of 12 preset games,
 from easy to difficult
save save board / solution to disk
reload reload game from disk
add to print queue
 add a solution to the print queue

 print previously stored solutionsprint
in line help
P-filter
 permutation filter removes
 similar solutions :
 same moves in different
 sequence

PAGE 1/1

26

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 9
 -

 G
A

M
E
S

S

U
D

O
K

U
 H

E
L
P

E
R

CHAPTER 9 GAME SUDOKU HELPER PAGE 1/2

New in version 3: Printing of puzzles, 1 or 2 per page. With/without digit options.

Introduction
Sudoku is a very popular number
puzzle. This Sudoku Helper - Solver
program assists in the solution of
Sudoku puzzles from easy to very
difficult. Below is a reduced image of
the SUDUKO - helper / solver.

INSTALLATION

Click on the download icon (lightning)
at the top op this page to download the
Sudoku Helper - Solver.

Sudoku Helper - Solver is freeware and
may be distributed without restrictions.
It ships as a single (.exe) file.
There is no installation procedure. Just
copy it to a map of your choice.
The Windows Registry is not changed.

programmer David Dirkse
size 490kB (1 .exe file)
system Windows 95 +
screen resolution minimal 1024*768
color depth minimal 16 bits
documentation in - line help
programming language Delphi 7

version 3 aug. 2011

PROGRAM INFORMATION

28

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/5ENERGY STORAGE
SYSTEMS

CHAPTER 10 GENERAL

Introduction
For several reasons, western
countries want to decrease their
dependency on oil. Alternatives for
oil are:
 - windmills
 - solar cells
 - thermal solar heat collectors /
 solar towers
 - methanol production from
 agricultural waste
 - nuclear energy
 - hydroxen (liquid or gas)
In the case of windmills, solar
collectors or solar panels a problem
arises:
sunshine and wind are variable to a
high degree. During favourable
conditions, excess energy must be
stored to survive periods of shortage.

This article focuses on some
possibilities to buffer energy. I
promise interesting comparisons,
especially by adding the energy-
densities of different solid fuels and
uranium used in nuclear power
plants. Not accounted for are
(maintenance) costs and efficiency of
the systems.

Motivation for this small study was an
article stating that the world's total need
of electricity can be met by a solar
collector system occupying the area of
France in the Sahara desert.
In such a thermal solar power plant
sunlight is projected on tubes containing
water. Water is heated to steam which
drives turbines and generators.
Electricity is transported by wire to the
consuming countries.
Every city or houshold however should
buffer an amount of energy for at least a
few days to survive cloudy days,
malfunctions or terrorist attacks.

The following storage systems are
considered:

C
H

A
P

T
E
R

 1
0

G

E
N

E
R

A
L

E
N

E
R

G
Y

 S
T
O

R
A

G
E
 S

Y
S

T
E
M

S

 - electrical / chemical : batteries
 - mechanical : potential energy
 - mechnical : kinetic energy
 - pneumatical : pressured air
Objective is to store an amount of energy
sufficient for one household for one day..

Energy in general

Energy is what causes change or
movement:
 - electrical : moving electrons
 - mechanical : moving matter
 - thermal : oscillating atoms
 - chemical : binding energy of atoms
Energy is never lost.
One type of energy may be transformed
into other types:
 - chemical to electrical: battery
 - electrical to mechanical: motor
 - mechanical to electrical: generator
 - chemical to thermal: combustion
 - thermal to chemical: growth of plants

The unit of force is Newton:
 1 Newton accellaretes a mass of 1 kg
 by 1 m/s² (in case of no friction).
A mass of 1kg on earth experiences a
gravitational force of 9.8 Newton.

The unit of energy is Joule:
In the case of mechanical energy:
 If a force of 1 Newton moves an
 object over 1 meter, the required
 amount of energy is 1 Joule.
This energy is lost as (friction) heat.

Energy E = F.d (Joule) if a force F moves
an object over a distance d.
Energy per second is called Power.
If a constant power is used during s
seconds, is the total energy:
 E = P.s
 P = E / s.

29

CHAPTER 10 GENERAL ENERGY STORAGE
SYSTEMS

PAGE 2/5

COMPUTER & MATH
 IN GAMES PASCAL
C
G

The unit of power is Watt:
 1 watt = 1 Joule / second.
Because 1 Watt is very little power, the
power of electric stoves or motors is
indicated in kiloWatt (kW). But 1 kW
during 1 second is still a small amount of
energy. Electric companies therefore
count in kWh, kiloWatt * hours. so,
1 kWh = 1000*3600 = 3.6MJ...{3.6 mega-Joule}

The average use of a household in the
Netherlands is : 10kWh = 36MJ per day.

Liquid fuels

One liter gasoline produces 30MJ when

combusted, so a household would need a
tank of 1.2 liters daily.

The energy-density of methanol is only
little less: 2 liter is needed for 36MJ of

energy. Methanol may be produced from
agricultural waste. It may be used in fuel
cells to generate electricity.

Liquid hydroxen has an energy-density
of 8.4MJ / liter.

This seems interesting but problems are
big: it can only exist near absolute zero,
about 270 degrees Celsius below zero.

Batteries

The best type of rechargable battery is
Li-ion, having an energy-density of
0.1kWh/kg = 360kJ/kg.

So, a battery of 100 kg is needed to
survive a cloudy day without a breeze.

Gas

Vapoured hydroxen under pressure of 200
bar has an energy-density of 1.9MJ /

liter, this is 16 times less than gasoline.

So for one day, a tank of 19 liters is
needed.
Compression needs much energy.
Natural gas consists for 90% of methane.
The energy-density is 35MJ/m³.

Potential energie

This is the principle of the cuckoo-clock :
a lifted weight.
In our home we build a shaft in which a
large weight can move up and down.

Figure 1: Potential energie

So 147 blocks are needed to supply the
energy for one day.

When a mass m (kg) is lifted h (meter),
the required energy is

 E = m.g.h,

where g = 9.8 m/s², the accelleration

of gravity on earth.
In case of a concrete block of 1m³ lifted 10
meter and a density of the concrete of
2500kg/m³ the total energy amounts:

 E = 2500 * 9 * 8 * 10 = 245kJ.

30

The mass of the layer at distance r from the
center is :
 m = 2r.d.r.

CHAPTER 10 GENERAL ENERGY STORAGE
SYSTEMS

PAGE 3/5

COMPUTER & MATH
 IN GAMES PASCAL
C
G

A 1kW vacuum cleaner can be operated for
245 seconds or little over 4 minutes
before the block reaches the ground.
A nice thing is that the position of the block
immediately shows the possibilities for the
rest of the day:
in case of downward movement one is
discouraged to switch on the flat-iron.

Kinetic energy
This is an application of the flywheel.
Flywheels are used to bridge a short power
loss. In this time, a diesel generator can be
started.

Figure 2.

We calculate the energy of a flywheel and
start with the formula for the kinetic energy
of a mass m moving at v (m/s):
 E = ½ m v²
Problem : the speed depends on the distance
from the center.
We consider a small concentric circle with

radius r and width .(green in figure above). r
Because the width is very small, every point
has the same speed.

The material has a density of (kg/m³).
The thickness of the wheel is d (meter).

so

The density of concrete still 2500 kg/m³, we

install a concrete flywheel with radius 1 (m)
and thickness 0.25m.
The number of revolutions is 25 / s.
The amount of stored energy is in this case:

2
E=0.25*3.14*0.25*2500(2*3.14*25)
=12 MJ
Not bad!

We can operate the vacuum cleaner for over 3
hours. Unfortunately a lot of noise must be
taken for granted: devices like this simulate a
thunderstorm.

Pressured air
Recently the press reported of cars being
moved by compressed air.
Time to investigate the amount of energy in a
cylinder holding compressed air.

We consider a very long cylinder where a
piston compresses the air as it it forced inside.

At n revolutions per second the speed is,
at distance r from the center :

 v = 2r.n

combining, the kinetic energy of the layer is :

 E = 4³dn²r³r

The speed at the perimeter is

 v = 2Rn

However, the mass of the complete wheel is

 M = R²d

which simplifies the formula

 E = Mn²²R²
 E = M(Rn)²

so

 E = ¼ Mv²

E = 4³dn² r³dr

E = ³dn²R4integrated over 0...R

33

C
H

A
P

T
E
R

 1
1

G

E
N

E
R

A
L

Newspaper article
„...The new -Gemini- windfarm,
largest in the Netherlands, will count
150 windmills of 4MWatt capacity
each.
The project costs 3 billion euro's and
will provide 785,000 households with
electrical energy."

GREEN LIES PAGE 1/2

COMPUTER & MATH
 IN GAMES PASCAL
C
G

G
R

E
E
N

 L
I
E
S

LIE 1
The Gemini windfarm will provide
exactly zero energy to housholds on calm
days. Modern societies need electrical
energy around the clock, so standby
power stations are necessary.
Less dependency on fossile fuels is out of
the question.

LIE 2
In energy calculations on windmills, the
so called "production factor" is used.
This is the average energy production
divided by the peak energy.
For windfarms at sea, a realistic figure is
33%.
It means, that for every day of sufficient
wind there are two days without wind.

A (Dutch) household needs about 10kWh
electrical energy per day.

The Gemini windfarm average daily
production is
0.33 * 150 * 4MWatt * 24 = 4.752GWh.

So, energy is supplied to
(4.752 * 109) : (10 * 103) = 475,200
households.
LIE 3

The number before is rather optimistic.
First we recall, that calculation of
averages must imply addition. Without
addition, no average can be calculated.
The energy of a windmill must be added,
which means: stored for later use.
In this storage- and unloading process,
energy is lost.
REALISM

Let's observe a reliable energy system.
Pumped storage is the cheapest and most
efficient storage system.
However, for the Netherlands and other
flat and overcrowded countries this is no
option. Gas storage is (but research is
necessary, there are no working mass storage
systems yet). Electrical energy from the
windfarm is used for the electrolyse of
water (H O) into hydroxen (H) and 2 2

oxygen. Hydroxen is nasty to handle,
therefore using carbondioxide (CO) we 2

produce methane gas (CH). 4

Figure 1.

CHAPTER 11 GENERAL

current

day

No code available

The efficiency of this
process of current to
methane is about 50%.
Burning CH to power 4

generators for electricity
production again has an
efficiency of 50%. Total
efficiency of current -->
gas --> current is 25%.

37

PAGE 1/2CHAPTER 13 - MATH THE PYTHAGORAS
THEOREM

C
H

A
P

T
E
R

 1
3

 -
 M

A
T
H

T
H

E
 P

Y
T
H

A
G

O
R

A
S

 T
H

E
O

R
E
M

Introduction

In a triangle with rectangle sides of
length a en b and hypothenuse c the
equation : a² + b² = c² is true (fig.1).

2 2 2Figure 1: a + b = c

The proof has two parts:
1. Proof that EFGH is a square.
 The construction implies that
 triangles AEH,BFE,CGF and DHG
 are congruent.
 So, in any case, EFGH is a rhombus.
 The length of a side we call c. Angles
 (1) and (3) are 90 degrees together, so
 angle (2) is 90 degrees.
 EFGH is a square.

2. The equation:
 Let's write an area as []
 Look at the areas and notice that:

 [ABCD] = 4 * [AEH] + [EFGH]
 (a + b)² = 2ab + c²
 a² + 2ab + b² = 2ab + c²
 a² + b² = c²

Proof -2-

Now we start with two unequal squares:
ABCD with a side of a BEFG with a side
of b. Point H is on AB such, that AH = b.
Which implies that HE = a (fig.3).

This equation is known as the Pythagoras
theorem. See figure 2.

Figure 2: the Pythagoras theorem

This theorem is the basis of many other
theorems and calculations.
This article supplies four proofs.

Proof -1-

We start with square ABCD.
On the sides, points E,F,G,H are placed
such that AE = BF = CG = DH.
We call this distance a.
A side has length a + b.

Figure 3

We use the scissors and cut triangles
ADH and HEF placing them on sides DC
and GF. Similar to proof -1- we see, that
HFID is a square. The coloring shows:

 a b c
2 2 2
 + =

See figure 4:

COMPUTER & MATH
 IN GAMES PASCAL
C
G

39

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 1
4

-
M

A
T
HPAGE 1/2CHAPTER 14 - MATH THE CRAZY

CIRCLE ILLUSION

T
H

E
 C

R
A

Z
Y

 C
I
R

C
L
E
 I

L
L
U

S
I
O

N

Introduction

Picture below shows two circles with centers M and N. The smaller circle
touches the bigger one inside and has half the diameter. The smaller circle
rolls inside the bigger one without friction. Center N moves over the green
circle.

After rotation, N is moved to position N'.
The circles now touch in Q.
Question:

which way does P travel if it is fixed to
the small circle? In the picture above line
MN is rotated to MN', we call this angle
v. This implies an arc on the bigger circle

of v/180 degrees, if the radius is 1.

Figure 1.

The smaller circle has half the radius, so
its rotation will be double the angle: 2v
degrees. Rotation is clockwise.

C
H

A
P

T
E
R

 1
5

 -
 M

A
T
H

T
H

E
 B

O
O

K
M

A
R

K
 P

R
O

B
L
E
M

COMPUTER & MATH
 IN GAMES PASCAL
C
G41

PAGE 1/3CHAPTER 15 - MATH THE BOOKMARK PROBLEM

Introduction
While waiting for train- or bus
connections, travellers pass time by
reading a book. In most cases, these
books have little value and there is no
need to keep them in good shape.
Also, the book will not be finished
during one period of waiting.
Therefore, the page to continue
reading has to be remembered. Three
ways are available to accomplish that:
1. Pages read are torn from the book
 and discarded. This method is
 recommended for walkers.
2. A bookmark is inserted after the
 page that was last read.
 Disadvantage: it may me be lost.
3. The page last read is folded such,
 that a small triangle sticks out.

In this article we choose the third
option. The problem is how to make
the area of GHI maximum

This problem carries the danger of
getting stuck in endless calculations.
A good strategy is of major importance.

We assume that the Pythagoras lemma is
needed as well as the theory of similarity
of triangles. In figure 1 we extend edge
BC and fold line EG to make triangles.
See figure 2 next page.
For convenience we define:
 AB = a
 BC = b
 AF = x
 BE = EF = p
 TC = h
 CG = GH = v

Markers denote equal angles.
(calculations left to the reader)
Final goal is a formula that expresses
the area of triangle GHI in x,a and b.

The sign ~ means similarity. The area of
triangle GHI is written as [GHI]

The strategy

p may be calculated from width a and x.
ΔTBE ~ ΔBAF, so: h may be calculated
ΔTCG ~ ΔTBE, so: v may be calculated

ΔGHI ~ ΔEAF
Define f = v : AE, then
[GHI] = f²[EAF], because the ratio of
areas of similar triangles is the squared
ratio of similar edges.

Calculation of p

Pythagoras lemma in ΔEAF

 x² + (a-p)² = p²
 x² + a² -2ap + p² = p²
 2ap = x² + a²

Figure 1: EG is folding line. B folds over F , C becomes H.
BE=EF , CG=GH

2 a
p =

x ² + a ²—

44

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/1CHAPTER 16 - MATH

C
H

A
P

T
E
R

 1
6

 -
 M

A
T
H TURNING RADIUS

CALCULATION

T
U

R
N

I
N

G
 R

A
D

I
U

S
 C

A
L
C

U
L
A

T
I
O

N

Figure 1: Side view

This article describes the calculation of the turning radius of a car or bicycle.
This radius depends on two things:
- the wheelbase w , which is the distance between the front- and the rear wheel
- the angle of the front wheel
We suppose that only the front wheel is able to turn. See figure 1 and 2 below:

Figure 2: Top view

Figure 3: Turning radius for front- and rear wheel

Calculation

The front and rear wheel follow a circle
with the same center.
At all times, the direction is
perpendicular to the radius.
See figure 3.

 so

 also

 so

 sin =
w

R
—

R = w
sin —

tan =
w
r—

r =
w

tan
—

The radius of the front
wheel is R, the rear
wheel r.
From the figure 3 we
conclude:

No code available

Introduction

C
H

A
P

T
E
R

 1
7

 -
 M

A
T
H

B
O

O
L
E
A

N
 A

L
G

E
B

R
A

 D
E
L
P

H
I

45

BOOLEAN ALGEBRA
DELPHI

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/8CHAPTER 17 - MATH

Variables and operators

A boolean variable may have the value
"true" or "false". For the purpose of
arithmetic operations,
"true" is represented by "1" and
"false" is represented by "0".
In this article, a boolean variable is
denoted by a single character like A, B or
C.
A variable stands for a proposition such
as "start switch pressed" , "temperature
within range", "counter value = 6" ,
"John is 10 years old"etc.

NOTE, that a proposition is either true(1)
or false(0):
Outside, the sun is shining or not.
A switch, or a door, is open or closed.

Boolean Algebra knows 3 basic opera-
tions which are AND, OR and NOT

Using these operators, Boolean variables
may be combined into formulas for more
complex propositions.

AND
The operator for AND is a single dot ".".
A B A B.
0 0 0
1 0 0
0 1 0
1 1 1

A.B equals 1 if both A and B are 1.
In an AND family, both the parents must
agree to grant the request of a child.
All possible AND operations between 2
variables are listed:
0 . 0 = 0
0 . 1 = 0
1 . 0 = 0
1 . 1 = 1

The AND operation is also called "logical
product". In electro-mechanics, an AND
may be formed by switches in series:
current can flow only if both switches are
closed.
In electronics, a circuit that performs an
AND function is called an AND gate.

Introduction
Boolean algebra is a type of algebra
that is used in the design of (digital)
logic circuitry, computer programs
such as search engines and in general
in analytic reasoning. It is an
arithmetic interpretation of Proposition
Logic and is also similar to Set theory.
Boolean algebra was designed by the
British mathematician George Boole
(1815 - 1864).

A program (Logic 10) that handles
Boolean algebra formulas is described
in the section Programming Truth Table
Reduction Chapter 49, page 152

Figure 1:

In figure 1 the lamp is on when all
switches A,B,C are pressed (true = 1).
In diode logic, the output voltage is high
(1) when all A,B,C inputs are high.
The diodes isolate variables A,B,C.

53

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 18 - MATH PAGE 1/12

No code available

Introduction
This article descibes some basic
geometric constructions using only
pencil, compasses and ruler. The ruler
enables the drawing of straigth lines,
the compasses are for drawing arcs
and for the duplication of equal
distances.

RULER AND COMPASSES
CONSTRUCTIONS

NOTE:
The scale of the ruler will not be not used.

CONTENTS
 perpendicular bisector
 circumscribed circle
 vertical perpendicular (down)
 vertical perpendicular (up)
 bisector of angle
 inscribed circle
 parallel line
 division of line in equal parts
 tangent of a circle
 duplicate an angle
 angles of 30, 45, 60, 72 degrees
 trisection of an angle
 the root of a*b
 the length of a * b
 the length of a / b
 regular hexagon
 regular polygon with 9 edges

NOTE: Symbol % means „angle“.

 Symbol means „triangle“.

Perpendicular bisector

This is the the most important line in
plane geometry. It holds all the points that
have equal distance to two other (given)
points.
Given are points A and B, see figure 1.
Construct a line perpendicular to AB
that intersects AB in the center:
1. draw arcs of same radius with
 centers A en B. Arcs intersect in P
2. again draw arcs of same (other)
 radius with centers A en B.
 Arcs now intersect in Q
3. line PQ is the perpendicular bisector
 of AB

NOTE:

 S is the intersection of PQ and AB
 AS = BS
 AP = BP
 AQ = BQ

 %PAB = %PBA

C
H

A
P

T
E
R

 1
8

 -
 M

A
T
H

R
U

L
E
R

 A
N

D
 C

O
M

P
A

S
S

E
S

 C
O

N
S

T
R

U
C

T
I
O

N
S

Figure 1: Line PQ is the perpendicular
 bisector of AB

C
H

A
P

T
E
R

 1
9

 -
 M

A
T
H

C
O

N
S

T
R

U
C

T
I
O

N
 O

F
 A

 R
E
G

U
L
A

R
 P

E
N

T
A

G
O

N

65

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Introduction
This article describes the construction
of a regular pentagon.
Also explained is why this construction
is correct.

PAGE 1/2CHAPTER 19 - MATH CONSTRUCTION OF A
REGULAR PENTAGON

The construction

Please look at figure 1.
ABCDE is the pentagon.
The construction involves the following
steps:
1. choose the length of line CD,
 the base of the pentagon
2. construct center M of CD
3. construct line perpendicular to CD
 and through D

Figure 1: The construction of a regular pentagon

4. draw N, so DN = DM
5. extend line CN
6. draw circle with center N and radius
 DN, P is intersection with extended
 line from 5.
7. extend perpendicular bisector of CD
8. draw circle with center C and radius
 CP, A is intersection with bisector
 of CD
9. draw circles with radius CD and
 centers A, C and D. Points B and E
 are other angles of pentagon.

Why is this correct?

Look at figure 2.

THE RANK OF
A FRACTION

Theory
It is possible to assign a unique
sequential number (called rank) to a
fraction. This is the trick: if t / n is a
non reducible fraction, then 2 other
fractions my be derived, called the
left- and the right child. See figure 1

Figure 1:

Starting with code 1 at the top, the left
child adds a "0" to the code of the parent,
the right child adds a "1" . To start with
rank 0 for the top fraction, the rank of a
fraction is simply its code - 1. In the
figure 2 the bit code is listed in
 red, the rank in blue.

Figure 2: Each fraction is assigned a bit code.

Starting with 1/1 at the top, all
possible fractions may be covered
in this way. Important is that:
• no fraction is omitted
• no fraction will appear
 more than once
• fractions are irreducible
 (have no common factors)
Above rules are easy to prove, using
contradiction. Also, the process is very
similar to the Euclidian algorithm to
calculate the GCD of two numbers.
Figure 2 below shows the top part.
Each fraction is assigned a bit code.

Speedbuttons allow for sequential
increment or decrement of each field.
Also it is possible to navigate through
the tree with the parent and child
buttons.

Figure 3: The Frank Program

You can
download
the
accompa-
nying file

frank.zip
frank.exe

CHAPTER 20 - MATH PAGE 1/1

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Figure 3: The Frank Program

The Program

A program has been written for
the calculation of the rank of a
fraction and vice versa. Edit fields
for the nominator, denominator
and the rank allow for data entry.
When one field is changed, the
other are adjusted. See figure 3.

67

T
H

E
 R

A
N

K
 O

F
 A

 F
R

A
C

T
I
O

N

C
H

A
P

T
E
R

 2
0

 -
 M

A
T
H

5

68

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 21 - MATH

C
H

A
P

T
E
R

 2
1

 -
 M

A
T
H PAGE 1/1GEOMETRY PUZZLE

G
E
O

M
E
T
R

Y
 P

U
Z

Z
L
E

Introduction

• a circle with radius r and inside 1

• two circles with radius r and r2 3

 which contact circle 1 at points
 A and B
• the centers of circles 1, 2 and 3.
• the intersection point P of
 circles 2 and 3 (See figure 1)

Prove the following theorem:

If P is on line AB then
 r = r + r 1 2 3

must be true Figure 2: Bruce’s solution

Figure 1: The theorem

Solution 1 (Bruce)
The problem is to prove that line APB is
straight if r = r + r1 2 3

For APB to be a straight line, we need to
show that the sum of angles
 APD + DPE + EPB = 180 degrees

See figure 2.

Below, you find a nice geometry
puzzle.

Description

Finally, we use the parallelogram to
relate angles
 DAP = EPB and ADP = DPE

Since angles of triangle ADP sum to
180 degrees, then so do the angles on
the line APB.

No code available

Notice that CD + AD = r1

 also CE + EB = r1

But, our condition is r = r + r1 2 3

So, this means that DPEC is a
parallelogram.

So, CD = r3

and CD = r2

C
H

A
P

T
E
R

 2
2

 -
 M

A
T
H

L
I
S

S
A

J
O

U
S

 C
U

R
V

E
S

 I
N

 M
O

T
I
O

N

69

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Lissajous was a French mathematician, who lived 1822 to

1880. He is famous for his research on waves and

oscillations.

A particular kind of graphs are called "Lissajous curves",

 3 examples are pictured right.

Lissajous curves are made by so called "parametric

functions".

"Common" functions, like produce a -y = 5sin(x)
single- y value for a value of x.
So, it is not possible to make graphs of spirals or
even a circle, which needs
2 y- values for each value of x.

Parametric functions overcome this limitation by
the following trick:
instead of y = f(x)
we write: y = g(v) and x = h(v)
So x and y are both functions of a new variable v.
(Graphics-Explorer uses v, often this variable is called t)

An example:
If and v has domain 0..6.28 y = 5sin(v), x = 5cos(v)

(2* radians), the plotted curve is a circle with
centre (0,0) and a radius of 5.

In general:
a Lissajous curve is the graph of a parametric
function with both x and y being trigonometric
functions of v.

Molested Lissajous curves.

That's how we may call the picture right.
Lissajous curves, like common functions, will be
smooth, without sharp angles.
The blue picture right is the result of the steps of v
being too large.

CHAPTER 22 - MATH PAGE 1/3LISSAJOUS
CURVES IN MOTION

Theory.

LINEAR REGRESSION

For the best fit, both derivatives must be
zero. This yields the following system of
equations:

PAGE 1/1

NOTE:
Refer to the article about the Least Squares

method (next page) for an article about the
best polynomial through a set of points. It
is a nice application of linear algebra.

72

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 23 - MATH

C
H

A
P

T
E
R

 2
3

 -
 M

A
T
H

A commom measure for the deviation is
the sum of squares of the differences:

in case of n points.
For point i we have :

Before continuing, first some definitions
and rules:

+
¹

d² ++d
²
²

nd²

 + b) d yi = i ax i- (

Definition

Arithmetic rules

The formulas for a and b of the
regression line y = ax + b

Function f(a,b) of the sum of the squared
deviations of points 1..n is:

Figure 1: The regression line y = ax + b

L
I
N

E
A

R
 R

E
G

R
E
S

S
I
O

N

Introduction
In this article I present a nice formula
for the regression line though a set of
points in a plane.
Given are points
(xi, yi)...where i = 1, 2, ..., n
Asked the line y = ax + b which has
the smallest deviation with these

f(a,b) is first differentiated to a, then to b.

f(a,b) = (a)(yi b)xi +–Σ ²

equations:

 sum:
 = +

¹
x ++x

² nx xi
 average:

 x=
 n

 Σ x i—

 Σ x Σ xi y n=

if c is a constant:

Application of the rules:

 xn= Σ xi

 xi xi =c c

 = xi()+ yi xi+ yi

differentiation to b:

(a,b) = 2 (a)(yi b)xi +–Σ
‚

f b (-1)•

(a,b) = 2 (a)(yi b)xi +–Σ
‚

f a – xi((•

Formally, we have found the formulas
for a and b. Above value of a can be
substituted at3) to find b.
However, with some manipulation the
formula may be converted into a more
elegant form. We separately attack
numerator and denominator.

xi –Σ x(²)

(– yiΣ xi x y–)(.)
—a =

Summarizing:

b = y - ax

= y– xiΣyiΣ xi

x y + x y) =–(y– xiyiΣ xi

 + x y) =–(y– xiyiΣ xi yix
(– yiΣ xi x y–)(.)

1. The numerator 2. The denominator

= xi²–ΣxiΣ xiΣxiΣx

=)(–Σ xi xix²

xix2 + =)(²–Σ xi xix

xix2(²)+ =)(²–Σ xi x

(²)xi –Σ x

differentiation to a:

and c = nc
from the average we conclude:

 x y = y

from ...(.2) we see

n = 0 Σ ayi b–Σ xi –

n = 0
 Σ ayi b–

Σ xi –— —n
b = y - ax (3)

substitute result for b at1)
a)(yi (y -ax)xi–Σ xixi ² – = 0

a)(yi yxi–Σ xixi ² – = 0xi + axΣ

)(a yi yxi–Σ xi ²– –ΣxiΣ xiΣxiΣ xiΣxix

a =
yyiΣ xi – xiΣ

)(xi²–ΣxiΣ xiΣxiΣx
—

)(a xi²– = ΣxiΣ xiΣxiΣ yyiΣ xi – xiΣxiΣx

= 0

a yi y –Σ xi – = 0+ axxi²ΣxiΣ xiΣxiΣ xiΣxiΣ

a)(yi bxi–Σ xixi ² – = 0..........(1)

a)(yi bxi–Σ – = 0...............(2)

No code available

CHAPTER 24 - MATH

C
H

A
P

T
E
R

 2
4

 -
 M

A
T
HTHE LEAST

SQUARES METHOD

T
H

E
 L

E
A

S
T
 S

Q
U

A
R

E
S

 M
E
T
H

O
D

Figure 1

PAGE 1/2

COMPUTER & MATH
 IN GAMES PASCAL
C
G

The relation between two numbers may
be defined by
- a table
- a coordinates system
- an equation

The Least Squares method

Given are points (x ,y) , (x ,y)...(x , y)1 1 2 2 n n

Requested: a polynomial degree m:
0 2 my = c + c x + c x + + c x0 1 2 m

through these points having the minimal
deviation.

Please look at figure 1 above:

Painted are points (x1,y1)................and
asked is the best fitting polynomial
degree 1 through these points.
"Best fitting" means, that the sum of the
squared differences for each point is
minimal. These differences are painted as
dotted lines in figure 1.
The applied "Least Squares" method to
find the best fitting polynomial is a nice
application of linear algebra.

My equation grapher Graphics-Explorer
(See chapter 36, page 111) uses this
method, the degree may be 0 to 7.

Each (x,y) pair we may paint as a point in
a coordinate system. Then we may search
for the best fitting polynomial.

NOTE: A polynomial degree n is:
2 n y = c + c x + c x + + c x0 1 2 n

or shorter: y = M . c

If the points are not exactly on the
polynomial, there will be a difference
vector: y - M . c

If all points are exactly on the
polynomial, so m+1 = n, we have:

2 m y = c + c x + c x + + c x1 0 1 1 2 1 m 1
2 m

 y = c + c x + c x + + c x2 0 1 2 2 2 m 2

 2 m
y = c + c x + c x + + c xn 0 1 n 2 n m n

written in matrix form:

²²

¹

²
y x mx ²x¹

n nny

c

x m
mx ²x¹

y x mx ²x¹
¹ ¹¹

...

...=

c

c

¹

...

...

...

...

...

...

...

...

1

1

1

n

²

0

...

...

...

...

73

CHAPTER 25 - MATH

C
H

A
P

T
E
R

 2
5

 -
 M

A
T
HGEOMETRIC PROOFS OF

TRIGONOMETRIC IDENTITIES

G
E
O

M
E
T
R

I
C

 P
R

O
O

F
S

 O
F
 T

R
I
G

O
N

O
M

E
T
R

I
C

 I
D

E
N

T
I
T
I
E
S

Introduction
Below, some proofs are presented of
trigonometric identities. The proofs do
not use any trigonometric formula or
rule, what makes them quite special.

Identity Nr. 1

arctan (1/2) + arctan (1/3) = arctan (1)
Proof A.

See figure 1, pictured are 4 squares.

Figure 1.

Figure 2.

Identity Nr. 2

o o o
 sin(20) + sin(40) = sin(80)

Proof.

See figure 3:

Figure 3.

Since: %C1 = arctan (1/2)

 %D1 = arctan (1/3)

 %B1 = arctan (1)

We must prove: %C1 + %D1 = %B1 (1)

EMC ~ DAC because:
o

 1. %A = %M = 90

 2. ME = 3.MC
 3. AD = 3.AE

so: %E = %D , which changes (1) 1 1

into: %C1 + %D1 = %B1

This is a basic geometric theorem, as:
o o

 180 - %B = 180 - (%C + %E)1 1 1

This concludes proof A.

Proof B.

See figure 2, note that EF = 5, because of

theorem of Pythagoras. ADG is the
o

rotation of ABE over 90 = %GAE.

Now observe polygon AEFG.

 FG = FE and AG = AE

so: AFG and AFE are congruent.
o

so: %GAF = %FAE = 45
o

 %GAD = %DAF = 45

arctan (1/2) + arctan (1/3) = arctan (1)

wich concludes proof B.

PAGE 1/2

COMPUTER & MATH
 IN GAMES PASCAL
C
G75

C
H

A
P

T
E
R

 2
6

 -
 M

A
T
H

G
E
O

C
A

L
C

77

Introduction
This article describes some formulas in
plane geometry.
They are nice applications of algebra.
List of contents:
 the area of a triangle
 the projection formula
 Stewart's formula
 the length of the median
 the bisector formula
 the radius of the circumscribing circle
 the radius of the inscribed circle
 the radius of the escribed circle
 kissing circles
 intersecting circles

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 26 - MATH GEOCALC

The area of a triangle

In cases where the length of the sides of a
triangle are known, but not the height, a
formula for the area of the triangle
without this height would be of help.

Please look at figure 1:
The base, opposite angle A, has length a.
BD = x, so DC = a - x. AD = h.
Side b is opposite angle B, side c is
opposite angle C.

There we go:
application of the theorem of Pythagoras
in triangles ABD and ADC

Figure 1

results in two equations:
 c² = h² + x²
 b² = h² + (a-x)²

or: h² = c² - x²
 h² = b² - (a-x)²
so: c²- x² = b² - (a-x)²
and
 c² - x² = b² - (a² -2ax - x²)
 c² - x² = b² - a² + 2ax - x²
 c² = b² - a² + 2ax
 2ax = a² - b² + c²

h² =
a² - b² + c²(—

2a 2a

This value of x, substituted in
 h² = c² -x² = (c -x)(c + x):

•h² =
2ac - a² + b² - c² 2ac + a² - b² + c²
— —

2a2a

•h² =
- (a² - 2ac + c² - b²) a² + 2ac + c²- b²
— —

2a2a

•h² =
- ((a - c)² - b²) (a + c)² - b²
— —

2a2a

•h² =
b² - (a - c)² (a + c)² - b²
— —

2a2a

•h² =
(b - a + c)(b + a - c) (a + c - b)(a+ c + b)
— —

2a2a

h² =
(- a + b + c)(a + b - c) (a - b + c)(a + b + c)
—

4a²

h² =
2s (2s - 2a)(2s - 2b)(2s -2c)
—

4a²

h² =
4 s (s - a)(s - b)(s -c)
—

a²

h =
2
—a s (s - a)(s - b)(s -c)

This formula can be simplified with a
trick.
If s is half of the circumference, then
 (a + b + c) = 2s
 (-a + b + c) = 2s - 2a
 (a + b - c) = 2s - 2c
 (a - b + c) = 2s - 2b

 a² - b² + c²—
2a

x =

)c -
a² - b² + c²(—)

PAGE 1/6

c +

83

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 27 - MATH CALCULATE PI() WITH

PENCIL AND PAPER

Introduction

In 1585, Metius calculated in 6 digits.
Vieta used a regular 393216 polygon and
in 1579 found 9 digits of . Adriaen van
Roomen , in 1579 , calculated 16 digits
and Ludolf van Ceulen, continuing this
work, approximated (1621) with 35
digits, using a regular 265 polygon.
Thanks to fast computers and power
series, today over a million digits of are
known. This knowledge has no practical
application. Lambert proved in 1761 that
 is an unmeasurable number.
Lindemann found in 1882 , that also is
transcendental, meaning that cannot be

 circumference circle = 2R²
 area circle = R²
 area sphere = 4R²
 volume sphere = (4/3)R³

In formulas about circles and spheres
we find the constant Π.

When the radius is R, then :

This implied, that no method can exist to
construct a line (by compass and ruler)
having the same length as the
circumference of a circle.

The Method

In fig.1 the circumference is approximated
by a square, in fig.2 by a regular octagon
and in fig.3 by a regular 16 - polygon.

 is about equal to
3.141592654.....but no
number exists that is
exactly . Therefore, in

formulas we rather use
 instead of say 3.14...
so we can substitute
later the number of
digits to to achieve the
accuracy we want. can
only be approximated:
more computing yields a
higher accuracy. This article describes
one of many ways to calculate , by
using a regular polygon to approximate
the circumference of an arc.

The greek mathematician Archimedes
used this method at 250 bC. Using a
regular 96 polygon, he found that
was a number between

Starting with a circle having a radius of 1,

half the circumference is exactly .
The more angles, the better the
approximation. Before we start the real
work, some initial considerations.

The "half-chord" formula

A chord is a line with both ends on a
circle.

. This article describes

C
H

A
P

T
E
R

 2
7

 -
 M

A
T
H

C
A

L
C

U
L
A

T
E
 P

I
 W

I
T
H

 P
E
N

C
I
L
 A

N
D

 P
A

P
E
R

PAGE 1/3

22
7

223
71

and

In fig.4 , AB and AC are chords. MA is
not. Starting with (the length of) AB, we
calculate the length of chord AC. NOTE,
that MA = MB = MC = 1. MC is
perpendicular to AB, AS = SB, because of
symmetry.

Half the circumference is exactly .

86

COMPUTER & MATH
 IN GAMES PASCAL
C
G

TRIANGLES AND SIDESCHAPTER 28 - MATH PAGE 1/2

T
R

I
A

N
G

L
E
S

 A
N

D
 S

I
D

E
S

C
H

A
P

T
E
R

 2
8

 -
 M

A
T
H

Problem
Given are 3 lines with lengths a, b
and c. Which conditions enable the
construction of a triangle having a,b
and c as sides?
Refer to figure 1. below.
The triangle has c as base. Angle C is
the intersection of the circles with radii
a and b, and centres A and B.

Now look at figure 2.

Figure 2

Figure 1

In fig.1, the construction of a triangle was
possible. In fig.2 it is not. The reason is
clear: in fig. 2 , a en b together are smaller
than c. The condition therefore can be
written as the inequality:

 c < a + b

 a < b + c and b < a + c

The following is funny:
If we call s half the perimeter of the
triangle, then:

 a + b + c = 2s

starting with the inequality

 a < b + c
we may write (left and right : add a):

 2a < a + b + c

so: 2a < 2s so: a < s

This should be true for b and c as well, so
we state:

Another nice problem

Given is a equilateral triangle containing
an arbitrary point P.
From P, we add lines

 PA = a,
 PB = b and
 PC = c.

Prove, that a, b and c always may be
sides of a triangle.
See figure 3.

 EVERY SIDE OF A TRIANGLE MUST BE
 SMALLER THAN HALF OF THE PERIMETER

 Of course, also must be valid

88

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CALCULATE SQUARE ROOT
WITH PENCIL AND PAPER

CHAPTER 29 - MATH PAGE 1/3

Introduction
In this article the ancient art of
calculating a square root, using pencil
and paper, is rediscovered.
The reader should know the addition
and multiplication tables by heart.
After the examples an explanation
follows why this method is correct.

Notation: the square root of 100 is
written as SQRT(100).

Examples
1. We calculate SQRT(4096)

step 1:
 Split the number (right to left) in
 groups of 2 digits, result 40 | 96
step 2:
 Find the digit which square is closest
 (below or equal) to 40, this is the 6 ,
 because 6 * 6 = 36.
step 3:
 Subtract 36 from 40 and shift next
 2 digits in place.

 SQRT(40 96) = 6
 36

 4 96

 The temparary answer is 6.
 The remainder is 4 96.
Step 4:
 Multiply temporary answer by 2,
 so 2 * 6 = 12.
Step 5:

 Write 12 as 12? * ?

step 6:

 Find digit ? for value closest (below)

 or equal to remainder.
 This digit is 4 , because 124 * 4 = 496
step 7:

 Subtract and add digit 4:

C
H

A
P

T
E
R

 2
9

 -
 M

A
T
H

C
A

L
C

U
L
A

T
E
 S

Q
U

A
R

E
 R

O
O

T
 W

I
T
H

 P
E
N

C
I
L
 A

N
D

 P
A

P
E
R

 SQRT(40 96) = 64

 36

 4 96

 4 96

 0

SQRT(4086) = 64, because 64 *64 = 4096

2. Calculating SQRT(1522756)

- Split number in groups of 2 digits,

 add 0 when number of digits is odd:

 01 | 52 | 27 | 56

- Find first square = 1

 SQRT(01 52 27 56) = 1

 1

 0 52

- Multiply by 2: 2 * 1 = 2

- Write 2? * ?

- ? = 2

- 22 * 2 = 44

 SQRT(01 52 27 56) = 12

 1

 0 52

 44

 8 27

- Multiply temporary answer by 2: 2 * 12 = 24

- Write 24? * ?

- ? = 3, because 243 * 3 = 729

 SQRT(01 52 27 56) = 123

1

0 52

 44

8 27

7 29

98 56

91

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Introduction
This article describes how my program
"Euclid" solves x,y in the equation
Ax + By = C, for integers A,B,C,x,y.
These type of equations arise from
puzzles like this:

 A collector of vintage cars leaves
 his 4 children the following will:

 John: 40% of the cars is for you.
 Of the remaining 60%, grant 5
 of your choice to a museum.
 Helen: 40% of the remaining cars
 is for you. After your choice, grant
 3 of the remaining cars to a
 museum.
 Emily: 40% of the remaining cars
 is for you. After your choice,
 grant 1 car to a museum.
 Roderick: the remaining cars are
 yours.

SOLVING Ax + By = CCHAPTER 30 - MATH PAGE 1/4

C
H

A
P

T
E
R

 3
0

 -
 M

A
T
H

S
O

L
V

I
N

G
 A

x
 +

 B
y
 =

 C

Question: how many cars should this
collection count minimally, to make such
a distribution possible?
Say, the collection counts x vehicles,
then:
 0.6(0.6(0.6x - 5) - 3) - 1
should be a positive integer.
If Roderick receives y cars, then:

 0.216x - 4.6 = y
 216x - 1000y = 4600

So, positive integers x and y must be
found, that satisfy the above equation.

The core of solving such equations is the
use of the Euclidean Algorithm.
So, first this algorithm is discussed.
After that, we will see how the algorithm
is applied to obtain the desired results.

The Euclidean Algorithm

A somewhat free interpretation of the
Euclidean algorithm is:

 gcd(A,B) = gcd(A - B,B)
where gcd means "greatest common
divisor"
In words:
 instead of calculating gcd(56,35),
 we may calculate gcd(21,35)

gcd(56,35) = gcd(21,35) = gcd(35,21) =
gcd(14,21) = gcd(21,14) = gcd(7,14) =
gcd(14,7) = gcd(7,7) = 7.

A proof can be constructed of 2 sub-proofs:
1. if d is a factor of A and B, then
 d is a factor of A - B
 {no common factor is lost}
2. if d is a factor of only A or B,
 then d cannot be a factor of A - B
 {no new common factor is introduced}

proof 1.

assume:
 A = ad and B = bd then:
 A - B = ad - bd = d(a - b) and
 (A - B)/d = a - b which is an integer.
 So (A - B) must have a factor d.

proof 2.

given:
 A does not have a factor d.
 B has a factor d and B = bd
 we must proof:
 gcd(A-B,B) = d is impossible
assume:
 A - B has a factor d, then
 A - B = A - bd = kd, where k is some
integer. Dividing by d :
 A/d - b = k so: A/d = k + b
b and k are integers, A/d is a fraction,
 so this is impossible.
A - B can never have a factor d.

This concludes the proof.

95

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 31 - MATH PAGE 1/2THE ULTIMATE GUTTER

Introduction
From the Netherlands, land reclaimed
from sea, with its canals, locks, dikes,
ditches and windmills, a search for the
Ultimate Gutter Dimensions..

C
H

A
P

T
E
R

 3
1

 -
 M

A
T
H

T
H

E
 U

L
T
I
M

A
T
E
 G

U
T
T
E
R

Luctor et Emergo
(Pump or Drown)

See section below:

In this trapezium the total length
AB + BC + CD = 1.

Variables are angle and length x.

Question: for which values of and x,
will area ABCD have a maximum?
Two solutions are presented:
1. graphical (using Graphics-Explorer)
2. analytical (application of calculus)

A formula for the area ABCD

See picture above.
The area A is the addition of a rectangle
(1-2x)h and two triangles, together bh,
so:
 A = (1 - 2x)h + bh

NOTE:
 h = x.sin(), b = x.cos()

so:
 A=x².sin().cos()+(1-x).x.sin()
 A=x².sin().cos()+x.sin()-
 2x².sin()

The Graphical solution

Graphics-Explorer (See chapter 36 page
111) uses variables x en y.
Also, constants (a,b,c) may be used in
formulas. These constants are changeable
by mouseclick, graphics adjust to new
values. It's obvious to use x for a side, y

for the area and a for the angle .

Type the formula:
y= x^2*sin(a)*cos(a)+ x*sin(a)-
 2x^2*sin(a)

and change the following settings of
Graphics-Explorer:

 • angles: degrees instead of radians

 • coordinates (0,0) left-bottom

 • +/- value for constants increment: 5
 (degrees)

 • zoom-center at (0,0)

 • x- scale (1) at right side (x < 1)

 • y- scale (0.2) at top

 • "Autoplot" (to make graphics adjust on
 constants change)

 • "replace" (to enable cleanup of old
 graphics)

Plot the formula and change value of a.
Observe maximum value of y and read
values of x en a, see picture below:

In this chapter we will produce computer art
by means of 3 dimensional Lissajous figures.
Lissajous (1822..1880) was a French
mathematician, famous for his research on
waves. The lissajous3d program allows the
plotting of 3 dimensional Lissajous graphics.
Below is a reduced picture of this (Windows)
program at work:

CHAPTER 32 PASCAL
PROGRAMMING

Introduction
Selections are made by mouseclicks.
For the constants a,b,c,d :
- a left mouseclick adds the (+/-) value
- a right click subtracts the (+/-) value.
The (+/-) value itself may be changed
also by left- or right mouseclicks.

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/2

97

PROGRAM FEATURES
 • choice of 3 sets of Lissajous formulas

 • choice of 4 pen styles:

 • sphere

 • cube

 • square

 • circle

 • choice out of 7 colors

 • single dots or connected (smooth) lines

 • step count from 100..1000

 • save settings to disc (*.l3d extension attached)

 • load settings from disc

 • save picture (*.bmp)

Interim variable t counts from 0 to the
selected stepcount.
Stepcount is selectable between 100
and 1000 in steps of 50.

The menu and buttons are
self explanatory.

COMPUTER ART
3D LISSAJOUS GRAPHICS

C
H

A
P

T
E
R

 3
2

 -
 F

R
E
E
W

A
R

E
L
O

G
I
C

1
0

:
T
R

U
T
H

 T
A

B
L
E
 R

E
D

U
C

E
R

 D
E
L
P

H
I

999999

CHAPTER 33 - FREEWARE PAGE 1/9LOGIC10:
TRUTH TABLE REDUCER DELPHI

Contents

• introduction

• features

• menu selections

• installation

• formula input

• operations

• table input

• table output

• reduction rules

• CNF - DNF

• inconsistency

• tautology

• save & load

• translate information

• scan information

• virtual terms at work

• history

Logic10 is a great help in the study of
Boolean Algebra, the design of digital
electronic circuitry and proposition logic
in general.
This is Logic10 version 2.0 (figure 1)
It supersedes all previous versions.

Features

Logic10 features are:

• () input: Proposition Logic

 formula or Truth Table
 ()CNF format

• Truth Table in or output: CNF

 formatDNF

• of all input and save and reload

 output data

• of input data and output printing

 results

• information of the selectable:

 formula translation process

• step by step selectable:

 information of the reduction process

• In-Line help information

Figure 1: logic10 at work

Introduction

Logic10 is a program that:

1. Generates Truth Tables from

 formulas in Boolean Algebra

2. Reduces Truth Tables by

 applying the rules of Boolean Algebra

C
H

A
P

T
E
R

 3
3

 -
 F

R
E
E
W

A
R

E
L
O

G
I
C

1
0

:
T
R

U
T
H

 T
A

B
L
E
 R

E
D

U
C

E
R

 D
E
L
P

H
I

COMPUTER & MATH
 IN GAMES PASCAL
C
G

A PRIME NUMBER
GENERATOR

COMPUTER & MATH
 IN GAMES PASCAL
C
G

The fomula P mod d yields the

remainder of the division of P by d.
If this result equals zero, P is not a prime
number. We research the number 229 to
be prime. The sequential divisors may be
d = 2, 3, 4, 5................, 228

and when all remainders are unequal to
zero we know that P is prime. However,
the job may be accomplished with less
work. Prime numbers bigger than 2
cannot be even, because these numbers
are multiples of 2. So starting from 3 we
may increase P and its divisors by 2.
Divisor d then has the values : 3, 5, 7,
9, But looking more closely at
numbers above 5 we observe:
...7, 11, 13, 17, 19, 23, 29, 31,...

an increment by 2 never happens twice in
a row.

Reason is that prime numbers above 6
have the form 6K+1 or 6K+5, where K =
1,2,3,4...... Please look:

 - 6K may be divided by 6
 - 6K + 2 may be divided by 2
 - 6K + 3 may be divided by 3
 - 6K + 4 may be divided by 2

so the list if divisors becomes (for prime
numbers above 6 and with the form 6K+1 or
6K+5):
.. , , , , , , , , .. 5 7 11 13 17 19 23 25 29

alternating addition of 2 or 4.

But another accelleration is possible.
Computers distinguish between real
numbers and integers. The operator for
division of real numbers is ' './
For integer divides, the (Delphi language)
operator is div. These division neglects
the digits right of the decimal point. We
continue investigation of number 229:

 1)229 div 13 = 17..........
 and the next divisor is 17
 2)229 div 17 = 13

In line 1) the quotient is bigger than the
 divisor (17 > 13).
In line 2) the quotient is smaller than the
 divisor.
This means that it is meaningless to
increase the divisor again and keep
dividing 229, because if 229 had a (prime)
factor we had met the factor already.

NOTE, that if P = a.b where a and b are

prime, then
 P mod a = 0
 P mod b = 0
 P div a = b

 P div b = a......this division is

 superfluous if a < b

CHAPTER 34 - FREEWARE PAGE 1/2

C
H

A
P

T
E
R

 3
4

 -
 F

R
E
E
W

A
R

E
A

 P
R

I
M

E
 N

U
M

B
E
R

 G
E
N

E
R

A
T
O

R

INTRODUCTION
Prime numbers are numbers that are
only divisible by 1 or by themself. The
first 10 prime numbers are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
A number can be factorized only in
one unique way, so prime numbers
may be considered the building blocks
of numbers. Prime numbers play an
important role in mathematics,
specially when coding secret
messages as is the case in electronic
banking. This article describes how
the program "prime200" calculates
prime numbers.

108

THEORY

The number investigated to be prime
should be divided by all smaller primes.
The quotient may not be an integer,
because this means that the number is a
multiple of this other prime. We also
could say: the remainder of the integer
division may not be zero. In the Delphi
programming language, the operator
mod calculates the remainder of an
integer divide.

COMPUTER & MATH
 IN GAMES PASCAL
C
G110

POLYGON
OVERLAP CALCULATOR

Introduction
The Polygon-Overlap-Calculator
program calculates the area of two
(convex) polygons and their overlap.
Convex means: any angle of the
polygon is less than 180 degrees. The
number of angles may vary from 3 to
12. Below is a reduced image of the
program at work:

The options of the Polygon-Overlap-
Calculator are:

 • number of angles selectable from 3 to 12

 • calculate area of polygons and also their
 overlap

 • shape of polygon changeable by mouse or
 by keyboard

 • polygons can be shifted (by mouse) in the
 coordinate system

 • changeable scale and position of
 coordinate system

 • images can be copied to clipboard or file

 • save coordinates of polygons, together
 with settings, to file

 • open files to load previously saved
 polygons and settings

 • print polygons, together with coordinates
 information

 - In-Line help
 - no installation procedure, simply copy
 to a map of choice. "overlap.exe"

Freeware
The Polygon-Overlap-Calculator is freeware
and may be used, copied and distributed
without restriction.

Application
The Polygon-Overlap-Calculator may, besides
calculation of areas, be used to match
geographic images such as maps and aerial
photographs with earth coordinates.

The Polygon-Overlap-Calculator overlap_e.

exe is written in Delphi-7. Size is about 330kB.

d7_overlap.zip: the source listing of the
overlap unit with all data formats and
procedures, source listing explanation and a
description of the algorithm.

You can download the
accompanying file overlap.exe
overlap.zip

CHAPTER 35 - FREEWARE

C
H

A
P

T
E
R

 3
5

 -
 F

R
E
E
W

A
R

E PAGE 1/1

P
O

L
Y

G
O

N
 O

V
E
R

L
A

P
 C

A
L
C

U
L
A

T
O

R

COMPUTER & MATH
 IN GAMES PASCAL
C
G111

Specifications

 • coordinate system 600 * 450 pixels

 • crosshairs with (x,y) indication

 • 9 different colors and formulas

 • scrolling and zooming with
 mouseclick, x/y independent

 • add or delete dots with mouseclick
 or by table editing

 • recognizes 4 types of equations:

GRAPHICS-EXPLORERCHAPTER 36 - FREEWARE PAGE 1/4

Figure 1: GraphicsExplorer 3 plotted:
red: y = 0.2x y = 5sin(x) x^2 + y^2 = 81 green Blue

Equations may contain constants
(a,b,c) that can be changed by a
mouseclick.
Graphs adjust instantly which
illustrates the role of constants as
in

y = a*sin(b*x + c),

where a,b,c are amplitude,
frequency and shift of phase.

table 1: 4 types of equations

G
R

A
P

H
I
C

S
-E

X
P

L
O

R
E
R

C
H

A
P

T
E
R

 3
6

 -
 F

R
E
E
W

A
R

E

Introduction
Graphics Explorer is a versatile and
powerful program to plot, print or
investigate graphs, equations and
functions. Besides the graphing of
different type of functions, Graphics
Explorer also is able to find the best
fitting polynomial or exponential
function given a set of points.

115

COMPUTER & MATH
 IN GAMES PASCAL
C
G

2

3

1

The program Euclid.exe at work:

Figure 1: Euclid with a=3, b=4, c=9 and three posible solutions

1

2

3

Figure 2: Euclid with a=11, b=9, c=17 and three posible solutions

+ =

+ =

SOLVING Ax + By = C
for integers

CHAPTER 37 - MATH PAGE 1/1

S
O

L
V

I
N

G
 A

x
 +

 B
y
 =

 C
C

H
A

P
T
E
R

 3
7

 -
 F

R
E
E
W

A
R

E

You can download the accompanying
files: euclid.exe
The complete project and code is
available for download euclid.zip

You can download the accompanying
files: chrcode.exe

The complete project and code is
available for download chrcode.zip

DISPLAY
CHARACTER CODES

Introduction
This freeware program displays the
character codes of a particular font.
This is helpful when the code is needed
of a character that is not represented
by the keyboard. Below is a snapshot
of the program at work.

Installation

The program chrcode.exe runs on all
windows platforms.
There is no installation procedure.
Simply copy the file to a directory .exe

of choice.

Figure 1: The program chrcode at work

CHAPTER 38 - FREEWARE

C
H

A
P

T
E
R

 3
8

 -
 F

R
E
E
W

A
R

E PAGE 1/1

COMPUTER & MATH
 IN GAMES PASCAL
C
G

D
I
S

P
L
A

Y
 C

H
A

R
A

C
T
E
R

 C
O

D
E
S

116

117

F
A

C
T
O

R
S

C
H

A
P

T
E
R

 3
9

 -
 F

R
E
E
W

A
R

E

COMPUTER & MATH
 IN GAMES PASCAL
C
G

FACTORSCHAPTER 39 - FREEWARE PAGE 1/1

Introduction
This program factorizes numbers
and calculates the GCD

Figure 1: Factors.exe with three examples (two extra inside)

You can download the accompanying files: factors.exe
The complete project and code is available for download factors.zip

Fonttest
This program shows how Windows
renders a character on the screen.
Individual pixels are enlarged 10 times,
to show the details.
Below is a picture of the program

FONTTEST

The red dot (see figure 1) has the (x,y)
coordinates of the statement
 canvas.textout(x,y,......)

The transparent checkbox is equivalent
to the statement
 canvas.brush.style := bsClear

Interesting (or shocking) may be the next
picture (see figure 2), where italic is
selected with transparent off.
The boundaries of the character as
obtained with the statements
 ...canvas.textheight("f")
 ...canvas.textwidth("f")

are violated severily.

Figure 1

Introduction

CHAPTER 40 - FREEWARE

C
H

A
P

T
E
R

 4
0

 -
 F

R
E
E
W

A
R

E PAGE 1/1

COMPUTER & MATH
 IN GAMES PASCAL
C
G

F
O

N
T
T
E
S

T

118

You can download the accompanying files: fonttest.exe/keystroke.exe
The complete project and code is available for download fonttest.zip

Figure 2

PAGE 1/1

Keystroke

This program shows the code generated
when a combination of keys is pressed.
The keydown event generates a (16 bit)
word when a key is pressed. The keyup
event generates a word when a key is
released. The keypress event generates

an 8 bit character code when a key is
pressed. Below is a picture of the
program at work with the „?“ key.

CHAPTER 41 - FREEWARE KEYSTROKE

COMPUTER & MATH
 IN GAMES PASCAL
C
G119

C
H

A
P

T
E
R

 4
1

 -
 F

R
E
E
W

A
R

E
 K

E
Y

S
T
R

O
K

E

You can download the
accompanying files keystroke.exe
The complete project and code is
available for download
keystroke.zip

LINEAIR EQUATIONS

Introduction

This freeware Delphi program solves systems of linear equations from 2 * 2 to
9 * 9 rows and columns. It uses the "Gauss-Jordan" elimination.
To illustrate this method, select STEP mode to watch the process step by step.
Below is a snapshot of the program:

Figure 1

Installation

The program runs on all Windows
versions.

Features

LinEq solves systems of linear equations
from 2 equations and 2 unknowns to 9
equations and 9 unkwowns.

MODE

Click mode button to switch STEP mode
on and off. In step mode, the program
halts after each step that sweeps the
columns.

SAVE

Click Save button to save data.

LOAD

Click Load button to reload previously
saved data.

HELP

Click Help-Info button to show in-line
help information.

THE PROJECT

LinEq was written many years ago in the
Delphi-3 programming language.
It was one of my first efforts.

CHAPTER 42 - FREEWARE

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/1

C
H

A
P

T
E
R

 4
2

-

F
R

E
E
W

A
R

E
L
I
N

E
A

I
R

 E
Q

U
A

T
I
O

N
S

120

You can download the accompanying files: lineq.exe
The complete project and code is available for download lineq.zip

NUMBERS

Introduction

CHAPTER 43 - FREEWARE PAGE 1/1

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 4
3

 -
 F

R
E
E
W

A
R

E

121

Numbers converts between decimal and
binary(2) to hexadecimal (16) number
systems.
The program is self - explanatory.

You can download the accompanying
files: numbers.exe

The complete project and code is
available for download numbers.zip N

U
M

B
E
R

S

This program converts between
number systems 2..16

Introduction
Pinwheel is a program which
simulates an old fashioned
mechanical calculator. Below you see
a half size image:

This type of calculators was invented
around 1850 and they were in use until
about 1970. Electronic calculators already
existed at that time, but they were very
expensive.

The mechanical calculator is build
around a rotating drum with pins that
can shift in or out. As the drum turns, an
outward pin advances a gearwheel one
step.
A gearwheel position shows a digit.
Pinwheel calculators may be found at
antique shops, but they are becoming
expensive and in most cases they are
defective.

If you search the web with phrases like
"mechanical", "calculator", "pinwheel"
you will discover private collections or
museums showing beautiful machines.

A very good one is www.calculi.nl with a
big collection of vintage calculator
machines.
Using a Pinwheel calculator you can add,
subtract, multiply or divide numbers
with or without decimal points.

My simulator features:
 • control by mouse or keyboard
 • In-Line help information and examples
 • optional "step by step" operation,
 showing carry or borrow propagation

Pinwheel is written for Windows.
Programming language is Delphi-7.
There is no installation procedure.

CHAPTER 44 - FREEWARE PINWHEEL PAGE 1/1

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 4
4

 -
 F

R
E
E
W

A
R

E
P

I
N

W
H

E
E
L

122

You can download the accompanying
files: pinwheel.exe
The complete project and code is
available for download pinwheel.zip

Installation

Ranks ships as a single .exe file.
It contains In-Line help information.
The system is Windows 95 and up.
Minimum screen resolution is 600*800.

There is no installation procedure, just
copy to a directory of choice.
The Windows Registry is not changed.
The size is 268kB.

Combinations

A combination is a selection of elements
from a set, where each element may be
chosen once and the sequence of
selection is unimportant.
In this program (ranks) the elements are
always the natural numbers 1,2,3,4,......
The maximum number of elements is 50.
The ranking of combinations may be
useful in the analysis of lotto games or
any case where combinations have to be
generated in a systematical way.

Introduction
Ranks is a program that assigns a
sequential number (rank) to a
combination, permutation or partition.
Given a rank, the combination permu-
tation or partition may be generated.
Given a combination permutation or
partition, the rank may be calculated.

Permutations
A permutation is a sequence of elements.
Elements are always named 1,2,3,4,....
The maximum number of elements is 12.
n elements have n! permutations, where

 n! = n.(n-1).(n-2) ...(3).(2).(1)

Ranking a permutation is useful when
sequences have to be generated in a
systematical way, as is the case in
logigram puzzle solving. Below are listed
all permutations of a set of 4 elements:

So, there are 24 permutations, ranked 0 to 23.

CHAPTER 45 - FREEWARE

rank combination
 0 1-2
 1 1-3
 2 1-4

rank combination
 3 2-3
 4 2-4
 5 3-4

There are 6 possible combinations, the
ranks are 0 to 5.

The number of possible combinations of
k elements from a set of n is written as

 C(n,k) = n!/(k!*(n-k)!)

Next, all combinations of 2 elements from
a set of 4 are listed together with the rank
of that combination.

rank comb.
 0 1-2-3-4
 1 1-2-4-3
 2 1-3-2-4
 3 1-3-4-2
 4 1-4-2-3
 5 1-4-3-2
 6 2-1-3-4
 7 2-1-4-3

rank comb.
 8 2-3-1-4
 9 2-3-4-1
 10 2-4-1-3
 11 2-4-3-1
 12 3-1-2-4
 13 3-1-4-2
 14 3-2-1-4
 15 3-2-4-1

rank comb.
 16 3-4-1-2
 17 3-4-2-1
 18 4-1-2-3
 19 4-1-3-2
 20 4-2-1-3
 21 4-2-3-1
 22 4-3-1-2
 23 4-3-2-1

Figure 1: Rank at work;
4 elements of 10: rank 100

RANKS PAGE 1/5

COMPUTER & MATH
 IN GAMES PASCAL
C
G

R
A

N
K

S
C

H
A

P
T
E
R

 4
5

 -
 F

R
E
E
W

A
R

E

123

In this chapter we will produce computer art
by means of 3 dimensional Lissajous figures.
Lissajous (1822..1880) was a French
mathematician, famous for his research on
waves. The lissajous3d program allows the
plotting of 3 dimensional Lissajous graphics.
Below is a reduced picture of this (Windows)
program at work: Below is a reduced picture
of the program at work:

CHAPTER 46 PASCAL
PROGRAMMING

Introduction
Selections are made by mouseclicks.
For the constants a,b,c,d :
- a left mouseclick adds the (+/-) value
- a right click subtracts the (+/-) value.
The (+/-) value itself may be changed
also by left- or right mouseclicks.

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/7

C
O

M
P

U
T
E
R

 A
R

T

128

PROGRAM FEATURES
 • choice of 3 sets of Lissajous formulas

 • choice of 4 pen styles:

 • sphere

 • cube

 • square

 • circle

 • choice out of 7 colors

 • single dots or connected (smooth) lines

 • step count from 100..1000

 • save settings to disc (*.l3d extension attached)

 • load settings from disc

 • save picture (*.bmp)

Interim variable t counts from 0 to the
selected stepcount.
Stepcount is selectable between 100
and 1000 in steps of 50.

The menu and buttons are self-
explanatory.

COMPUTER ART
3D LISSAJOUS GRAPHICS

Figure 1a: 3D Tic-Tac-Toe in progress

There are three buttons:
 - cube : new game
 - arrow : take move back
 - lamp : analyse board state

Analysis displays the result of a move in
each field.
W3 means : winning in 3 moves.
L5 means : losing in 5 moves.

Figure 1b: 3D Tic-Tac- Toe done

Introduction
Here you see a 3 dimensional
tic-tac-toe game. One in progress
one done. It is a two-player version,
written for Windows computers.
Winner is the one who is the first to
places three adjacent O or X characters
horizontal, vertical or diagonal.
See fig 1b A single player may try to
find the best strategy.

This article describes a Delphi
programming project of a 3
dimensional tic-tac-toe game.
It is a two player version, however, for a
single player it may be interesting to find
a winning strategy. A game state may be
analysed: per field a calculation is made
that predicts the result of a move in that
field (e.g. winning in 5 moves, losing in 7
moves).

This game is simple, as is the program.
However, in the case of more complex
games having menus to choose from,
single and dual player options or several
game levels, the same structure may be
used. Also the analysis procedure is
applicable to a wide variety of games.
Therefore this project is a general
blueprint for board games.

The Delphi(7) project has one form and
two units.
Form1 holds the game and three images
used as buttons.
Unit1 handles events, paints the game
and contains the procedures to control
the game.
Unit2 has the data for the game, moves
and the procedures for game analysis.

CHAPTER 47 PASCAL
PROGRAMMING

THE TIC-TAC-TOE GAME PAGE 1/13

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

T
I
C

 T
A

C
 T

O
E

COMPUTER & MATH
 IN GAMES PASCAL
C
G135

148

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

B
I
T
M

A
P

 R
O

T
A

T
I
O

N
 D

E
L
P

H
I

BITMAP ROTATION
DELPHI

CHAPTER 48 PASCAL
PROGRAMMING

PAGE 1/4

Introduction
This article describes a Delphi project
for bitmap rotation. There are 3
units:
- unit1: exerciser to test the rotation
 procedures
- rotation_unit: procedures for
 bitmap rotation
- clock_unit : time measurement
 procedures

Exerciser

The form has buttons for loading and
saving bitmaps.
Also 3 modes of rotation are selectable
 - coarse: fast but less accurate
 - medium: somewhat slower but
 destination bitmap is fully covered
 - fine: slow, but with soft edges
Bitmaps are displayed in paintbox1.
Moving the mousepointer over the
paintbox with leftmousebutton pressed,
causes the picture to rotate in the selected
mode. Below is an example of medium
mode rotation

Figure 1: Medium mode rotation

Rotation takes place between a source
and a destination bitmap. In coarse
mode, the source bitmap is scanned pixel
by pixel and projected on the destination
bitmap. Therefore, not every pixel of the
destination bitmap may be covered.
In medium mode, the pixels of the
destination bitmap are scanned and their
value is loaded from the source bitmap.
This insures that all pixels of the
destination bitmap are covered.
In fine mode, the scanning is the same as
in medium mode, but each pixel is
divided in 9 equal parts. Parts may cover
different pixels in the source map, the
colors are averaged for the final color of
the destination pixel.

Programming

The programmer has to create both the
source and the destination bitmap.
Before a rotation may take place, the
rotation_unit has to be informed about
the names of the bitmaps.
This is done by a call to

procedure
 (,)setmaps sourcemap destination map

Setmaps sets the pixelformat of both
bitmaps to 32 bit.
Also, the dimensions of the destination
bitmap are adjusted to accomodate
all possible rotations of the source map.

procedure (:)coarserotate deg word

procedure (:)mediumrotate deg word

procedure (:)finerotate deg word

may be called. Deg is the rotation angle
in degrees from 0..360. Rotation is
clockwise, so, for a left rotation of 90
degrees, 270 degrees must be specified.
Do not forget to call the setmaps
procedure after loading an image from a
file into the source map.
This insures the proper 32 bit format and
dimensions of the destination map.

152

Introduction
Logic10 is a Windows program for
applications of Boolean Algebra.
Its purpose is:
 - generate Truth Tables from
 formulas
 - reduce Truth Tables to the simplest
 form.
This article describes truth table
reduction by Logic10 version 2.0

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PROGRAMMING TRUTH
TABLE REDUCTION

CHAPTER 49 PASCAL
PROGRAMMING

PAGE 1/8

Boolean Algebra
Like any algebra, Boolean Algebra has
variables and operators.

Variables

Are denoted by a single capital letter:
A, B, C......
A variable can have the value true (1) or
false (0).

Operators

 . for AND
 + for OR
 / for inverse
NOTE: Normally, the inverse oparator is
a horizontal bar on top of the character
however, this is hard to edit.
" / " has the highest priority, then " . " ,
then " + "
NOTE: Between variables, the " . "
operator may be omitted, so AB = A.B

Formulas

Variables and operators together make
formulas. The most convenient format is
CNF (conjunctive normal form).
This is the format
ABC + DEFG + H + IJ
ABC, DEFG, H , IJ are called terms.

CNF is a list of terms that are OR'ed.

The CNF formula AB + /AC is true
if A=1 and B=1
........OR..........
if A=0 and C=1

Data Structures

In Logic10, a maximum of 15 variables is
allowed. These characters are stored in
alphabetic order in the
Variable Table.

In a formula, a variable may be in
the true or in the false state.
In:
 AB/CD A,B,D are in true state
 C is in false (negated) state.

Terms are coded in a 16 bit word.
Each bit (0..14) corresponds with a
variable in the Variable Table. A bit is 0
for the variable in the negated state, a bit
is 1 for the variable in the true state.
So, the term is true when its bits are the
same as the variable values.
Below is the term: A/BCD/E/FGH

In formula: AB/C + ADCE + D/E
we notice variables A,B,C,D,E.
Each term holds only some variables,
not all. So per variable a bit is needed to
indicate the presence. Another 16 bit
word holds bits that enable (1) or disable
(0) the corresponding variable.

Figure 2 shows the term /BCEF/G where
the Variable Table is ABCDEFGH.

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

P
R

O
G

R
A

M
M

I
N

G
 T

R
U

T
H

 T
A

B
L
E
 R

E
D

U
C

T
I
O

N

Figure 1

160

Introduction
The Delphi "system" unit contains a
function called abs(x) where x may
be real or integer. This function
returns the absolute value of x, so
 abs(15) = 15
 abs(-15) = 15

Note, that the abs() function
combines actually two different
functions:
 if x < 0 then abs(x) = -x
 if x > 0 then abs(x) = x

This article focuses on some
surprising cases where use of the abs
function is time saving and
convenient.

COMPUTER & MATH
 IN GAMES PASCAL
C
G

ABSOLUTE FUNCTION
DELPHI PROGRAM

CHAPTER 50 PASCAL
PROGRAMMING

PAGE 1/3

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

A
B

S
O

L
U

T
E
 F

U
N

C
T
I
O

N
 D

E
L
P

H
I
 P

R
O

G
R

A
M

1. Distances
While moving the mouse over the screen,
(x,y) coordinates are generated.
Say, successive mouseclicks save these
coordinates in (x1,y1) and (x2,y2).
We want variables dx and dy to hold the
horizontal and vertical distances between
points 1 and 2.

This code does the job
 := (-)dx abs x1 x2
 := (-)dy abs y1 y2

Note, that there is no difference between
the results of abs(x1 -x2) and abs(x2 -x1).

To avoid negative distances, if statements
could be used, but this approach is
slower. Modern processors execute
instructions in pipelines that read codes
ahead. If statements disrupt this proces,
the pipeline has to be rebuild when
instruction flow alters.

2. Lower boundery
Say we use a variable x in our program
and x is not allowed to be negative.
This means, that a negative value of x
must be rounded to zero.
An if statement may do the job, but an
abs() function can do the job faster.

To understand how this works we first
have a look at the graph of the function
y=abs(x).

In the above graph the scale is 0.2.
In position (0,0) the graph has a sharp
bend. This is a unique property of the abs
function. Other functions like
polynomials, sin, cos, tan, log have
smooth graphs, no bends.

All following results are obtained from
the above graph.
The bend may not be positioned at (0,0).
Therefore we first introduce a few trics to
manipulate graphs in general:
shifting, scaling, reflection.

If in a general function y = f(x) , the x is
replaced by (x-1) than the graph will shift
1 scale to the right.
This is obvious: say point P(p,q) is on the
graph y = f(x) , which means that q = f(p).
However if x is replaced by x-1 then not
p = x, but p = x -1 is the case so: x = p + 1.
p is changed to p + 1, indicating a shift of
1 scale to the right.
In a similar way we conclude that
replacing y by (y-1) shifts the graph 1
scale up in vertical direction.
Replacing x by (x+1) shifts the graph 1
scale left, replacing y by (y+1) shifts the
graph 1 scale down.

Figure 1: Function y=abs(x)

163

Introduction
This article is about the programming
of tree graphs.
It includes creation, modifications and
also undo operations. In mathematics
a graph is a picture of dots (also
called node), which may be
interconnected by lines. Each dot
(node) represents a situation or
object.
An interconnecting line indicates a
dependency between the dots or a
transition. Graph theory is about the
properties of graphs. Graphs are
applied in a variety of fields such as
 • road maps and floor plans
 • electrical networks
 • molecules
 • industrial planning
 • combinations
 • information technology :
 • file systems
 • computer games
 • text editing

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PROGRAMMING
TREE GRAPHS

CHAPTER 51 PASCAL
PROGRAMMING

PAGE 1/9

Trees

A tree is just a type of graph. Common
properties of tree graphs are
 • there are no isolated nodes (each node
 is connected to at least one other node)
 • if 1 interconnecting line is removed,
 2 isolated trees will result
 • the route from node A to B is the same
 as from B to A, there are no loops

This tree could represent
a file system where
map A contains four files,
including map B with three
files including map C
containing five files.

The Delphi-7 project has three units:
 1 : unit1

 • paintboxes to visualize the tree
 and show edit actions

 • buttons for creation and
 modification of the tree
 2 : data unit with custom defined data
 3 : tree unit with all data structures,
 procedures and functions.
All code to modify trees and undo are
contained in the tree unit. Form1, Unit1
allow testing of the tree procedures.
The data unit is only there to isolate the
custom data from the tree properties.

Figure 1: Example of a tree graph

C
H

A
P

T
E
R

 4
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

P
R

O
G

R
A

M
M

I
N

G
 T

R
E
E
 G

R
A

P
H

S

Figure 2: A graph is pictured with elements A,B,C,D

172

C
H

A
P

T
E
R

 5
2

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

D
E
L
P

H
I
 D

R
A

W
I
N

G
,

P
A

R
T
 1

 D
E
L
P

H
I

COMPUTER & MATH
 IN GAMES PASCAL
C
G

DELPHI DRAWING,
PART DELPHI1

CHAPTER 52 PASCAL
PROGRAMMING

PAGE 1/5

In Delphi, several ways exist to draw
lines or fill shapes.
This article focuses on the comparison
between these methods.

Ultimately, all drawing amounts to
setting a single pixel on a bitmap canvas.
Therefore, single pixels are written and
the time required is measured.
Each drawing method is used in two
type of actions
1. drawing a line
2. filling a rectangle with a color

About the program

On the Form, several BitButtons are
placed.
Pressing a button triggers a specific
action and the time needed per pixel is
indicated in the Statictext.

All drawing is done in a 100 * 100
bitmap, named bm.
The pixelformat is 32 bit.
A paintbox is added to show the contents
of the bitmap after drawing.

The time is obtained from the system
clock, which counts milliseconds,
by the GetTickCount function.
For accurate measurement, the operation
has to be repeated many times.
Procedure ShowTime(n) presents the
elapsed time after writing n pixels.

Part-1
Introduction
This article is about drawing in the
Delphi programming language.

In part - 1, the very basic principles
are covered : single pixels.
The described methods may be used
as the basis for more complicated
geometry.
And, by having full control of the
drawing process, the programmer
may add enhancements that Delphi
does not offer, such as:
 - dash-dot lines of greater width
 then 1 pixel
 - lines that change color on the
 way
 - canvasses with several levels
 - use of a clipping rectangle
 - slow motion drawing for
 educational purposes

Part-2 covers drawing dots and lines.

Part-3 describes a method for
smooth, flicker free, drawing.

Part-4 describes a way to paint circles
and ellipses in the Delphi
programming language.

177

C
H

A
P

T
E
R

 5
3

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

D
E
L
P

H
I
 D

R
A

W
I
N

G
,

P
A

R
T
 2

 D
E
L
P

H
I

INTRODUCTION PART 2
Part-1 of this chapter summarized
the basic ways of modifying pixels.
Main conclusion was that for fast
drawing it is best to write directly to
memory, minimizing the use of the
pixels[..,..] or scanline[..] properties.
This requires calculation of the pixel
address.
Goal of this little research is to add
some extra features in the TBitmap
class.
This new class is called the
Xbitmap class.

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 53 PASCAL
PROGRAMMING

PAGE 1/7DELPHI DRAWING,
PART DELPHI2

The new features are:
- clipping rectangle
- 4 drawing levels
- multipixel wide dash-dot lines, 20 styles
- improved stretchdraw method
- improved floodfill, with (optional)
 enlarged fill patterns for printing
- optional arrows at begin/end of
 lines and arcs
- calculation of rectangle that was
 modified

Clipping Rectangle
By default, the XCliprect rectangle is set to
the full size of the bitmap. Pixels outside
this rectangle cannot by modified.
When lines, circles, polygons ... are
drawn, painting outside the XCliprect is
suppressed.

Drawing Levels
Bits 0,1 of a pixel (so blue bits 0,1) make the
drawing level. Highest level is , 0 (00)
lowest is . Reason is the white 3 (11)
($ffffff) background of the printer
canvas. Typical use of the levels may be:
level 0 - (00) :
 foreground color for text, lines

 level 1 - (01) :
 grids
level 2 - (10) :
 user supplied background
 (brush when filling rectangles...)
level 3 - (11) :
 system supplied backgound

Rule : a pixel cannot be overwritten by a
lower level pixel.
The effect is a 4 layer bitmap.

Modified Rectangle

The XModRect rectangle contains the

modified pixels. Outside XModRect no

pixels were changed in the most recent
operation. XModRect assists in dynamic

drawing where modifications in the
bitmap must be copied to a paintbox.

XBitmap Properties

Xpenwidth

(1..32) the diameter of the pen
XPenLevel, XBrushLevel (0..3)
XPenColor, XBrushColor

(DWord with r.g.b. color value)
XlineStyle

(0..19) dash - dot pattern selection
Xarrowcode

(0..15) type of arrow + bit8 = 1
for begin arrow, bit7 = 1 for end arrow
Xfillstyle

(0..15) selects fill pattern for floodfill
 XfillSize

8*8 (normal) or 24*24 (printer)
 true if brush is in useXusebrush

NOTE:
above properties are added to the
Bitmap, not the canvas, so this is valid:

myXbitmap Xpenwidth. := ;10

184

C
H

A
P

T
E
R

 5
4

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

D
E
L
P

H
I
 D

R
A

W
I
N

G
,

P
A

R
T
 3

 D
E
L
P

H
I

DELPHI DRAWING,
PART DELPHI3

CHAPTER 54 PASCAL
PROGRAMMING

PAGE 1/9

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Introduction
This article describes a method for
smooth, flicker free, drawing.
Please refer to figure 11 below:

On a paintbox a line with arrow is drawn.
This is done by moving the mouse-
pointer over the paintbox,
pressing down (and holding) the left
mousebutton at point 1, moving the
pointer to point 2, where the mouse-
button is released.

General Description

The affected rectangle of the paintbox is
marked by a purple line.
Outside this rectangle, no changes took
place. While the mousebutton is down
and the mouse is moving, a new line
must painted after each mouse-move.

Figure 11

So, at each mouse-move, we have to

• erase the old line

• paint the new line
Erasing may be done by repainting the
effected rectangle. But by painting
directly in the paintbox, erasing and
repainting causes flickering, which is
very unpleasant to the eyes.

A better way is to paint in a Bitmap and
copy only the changes to the paintbox.
While painting in this bitmap, during the
paint process old images have to be
erased before the new image, represen-
ting the new position, can be painted.
So, we add another bitmap, which holds
the unchanged image and thus can be
used to restore parts of the bitmap we
use for painting.
Restoring is conveniently done by

procedure
bitmap2 canvas copyrect. .
(, . ,) pRect bitmap1 canvas pRect

where pRect is the affected area that
needs restoring.

See figure 12.

Figure 12

C
H

A
P

T
E
R

 5
5

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

COMPUTER & MATH
 IN GAMES PASCAL
C
G

D
E
L
P

H
I
 D

R
A

W
I
N

G
,

P
A

R
T
 4

 D
E
L
P

H
I

DELPHI DRAWING,
PART DELPHI4

PAGE 1/5
CHAPTER 55 PASCAL
PROGRAMMING

Introduction
This article describes a way to paint
circles and ellipses in the Delphi
programming language.
Please look at the picture below:

Figure 13:

The general equation of an ellipse is:

193

Figure 14:

The derivative of the equation is:

If y' = -1 we get

Substitution of y in the original equation
of the ellipse:

and similar

==>

==>

==>

In case of a circle, where a = b = r
(radius), the equation becomes
x² + y² = r²

For the convienience of calculations we
assume the center of the ellipse at (0,0).

The ellipse is painted point by point.
To avoid unpainted "holes" between
pixels, the slope of the tangent must be
observed.
If the tangent is < 1 (and > -1) , a
horizontal oriented line , the x coordinate
steps by 1 and the corresponding y is
calculated.
However, if the tangent is > 1 (or < -1) , a
vertical oriented line, then y must be
stepped by 1 and x is calculated.
So we first calculate the point on the
ellipse where the tangent = 1 (or -1):

If y' = -1 we get

2x 2y y’ __ ____ + = 0
a² b²

Substitution of y in the original equation

x y b² x_ _ ___ - = 0...y =
a²a² b²

x² b² x²__ ___ + = 1
4a² a

((((=1+
² ²

x
a

Y
b

CHAPTER 56 PASCAL
PROGRAMMING

PAGE 1/2CHARACTER STRING
ENCRYPTION DELPHI

Introduction
Sometimes is it desirable to save text
in an unreadable form, as is the case
with passwords. This article describes
a simple way to encrypt a character
string.

The Method

A character string is regarded as groups
of 4 characters. So, characters 1..4 make
group 0, characters 5..9 make group 1,
and so forth. Each group of 4 characters
is packed into a 32 bit integer ().DWORD

Then the bits of this DWORD are
interchanged. Next the DWORD is
regarded as groups of 6 bits. Groups 0..4
are 6 bits wide, group 5 has 2 bits left.

A 6 bits group is an index into a preset
string of 64 characters, so each 6 bit value
yields a character. These characters
together make the encrypted string.

The advantage of this method is , that a
character has no fixed translation,
because it depends on the neighbouring
characters in the string.

Note, that 4 characters (each 8 bits in size)
translate to 6 characters.

The figure below shows the data flows.

Figure 1:C
H

A
R

A
C

T
E
R

 S
T
R

I
N

G
 E

N
C

R
Y

P
T
I
O

N
 D

E
L
P

H
I

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 5
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

198

Below is a reduced image of the
SUDUKO - helper / solver.

SUDOKU
HELPER - SOLVER

S
U

D
O

K
U

 H
E
L
P

E
R

 -
 S

O
L
V

E
R

 1

Introduction
Sudoku is a very popular number puzzle.
This Sudoku Helper - Solver program
assists in the solution of Sudoku puzzles
from easy to very difficult.

Options
standard:
• input of numbers for a new puzzle
• erase the board
• save puzzles on disc (.sdk extension)
• open puzzles from disc (.sdk extension)
• print puzzles, including options,
 maximum 2 per page
• copy puzzle to clipboard
• paste puzzle from clipboard

• in-line help information
• while searching for solutions:
 ° take numbers back
 ° color difference between original
 numbers and numbers added
 ° reject wrong numbers already present in
 the row, column or group
 ° restore original puzzle

selectable:
• while searching for solutions:
• show options in open fields
• warn if erroneous board state occurs
 (zero-option field, missing options)
• indicate single choice fields
• automatic moves on single choice
 fields
• reduction of options per field,
 - by analysis

COMPUTER & MATH
 IN GAMES PASCAL
C
G

The Sudoku Helper - Solver program is
freeware and may be distributed without
restrictions. It ships as a single (.exe) file.
There is no installation procedure.
Just copy it to a directory of your choice.
The Windows Registry is not changed.

PAGE 1/8

C
H

A
P

T
E
R

 5
7

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

200

CHAPTER 57 PASCAL
PROGRAMMING

AN APPLICATION OF
"ABS" FUNCTIONS

Figure 1 below shows a bitmap with
rectangle. The pixels of this rectangle
have to be set to the color black.

Figure 1

Introduction
We have to paint a rectangle 45 degrees
rotated. In this article I describe a neat
way to do this. Let us give the top pixel
the coordinates (sx,sy). See figure 2
below. The sides of the rectangle have
lengths of h and v. Say, we are painting
the line indicated yellow. We will
accomplish this task by painting a
horizontal line from x1 to x2 at y pixels
from the top of the bitmap.

Figure 2

var : ;j word

 , : ;h v word

 , : ;sx sy word

 : ;bm Tbitmap
begin
.....
//creation of bitmap
//setting rectangle dimensions h and v
//setting position (sx,sy)
...
 . with dobm canvas
 begin
 . := ;pen color 0

 . := ;pen width 1

 := + - for 0 to 2j h v

 //from top to bottom of rectangle
 begin
 := + ;y sy j

 := ???;x1

 := ???;x2

 (,);moveto x1 y

 (,)lineto x2 y

 ;end //for j
 ;end //with bm
....
end;

So, the program will look like this:

Let's take a look at x1 and its relation to j.
To simplify the situation we assume that
the top pixel has coordinates (0,0).
 j 0 1 2 3 4 5 6 7 8
x1 0 -1 -2 -3 -2 -1 0 1 2

Figure 3 shows the graphics

Figure 3

208

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 58 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 5
8

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

T
H

E
 U

S
E
 O

F
 "

A
B

S
"
 F

U
N

C
T
I
O

N
S

PAGE 1/2

PROGRAMMING LOOPS

Introduction
Often it occurs that instructions have
to be repeated as long as a number of
conditions are satisfied. Look at the
following flowchart, where proc1,2,3
are statements and procedures and
quest 1,2,3 are questions to decide
where to continue the program based
on different conditions.

Figure 1

These loops are simple to program in the
old-fashioned way: labels and goto
statements.
In a structured way however
complications may arise, see flowchart
figure 2.

Figure 2:

The loop is repeated as long as the
conditions in the while statement are
satisfied.
Problem is, that when returning to the
while statement after a loop, the path
taken through quest1..quest3 is not
obvious.
This results in complex condition
checking.

210

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 59 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 5
9

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

PAGE 1/2

P
R

O
G

R
A

M
M

I
N

G
 L

O
O

P
S

Figure 1: Layout of a (board) game

Introduction
This chaptor gives some suggestions how to
control your (board) game.
Illustration below shows the layout of such
a game, connect4 or whatever.

There is a board, where pieces are placed
by the players. A game is started by
pressing the "start" button. A game is
ended by pressing the "new game"
button. Properties as level or strategy are
selectable by the "property" buttons.

First of all, procedures have to be written
to paint or erase the board.
These are low level paint procedures.

Next, data structures must be designed,
such as:
 - a two dimensional array
 representing the board state
 - a one dimensional array holding the
 list of moves
 - additional arrays of constants that
 control game behaviour

NOTE: the low level paint routines must
not use the arrays, which are higher in
level. Reason is, that a change of the data
structures during the design phase does
not need a redesign of the low level paint
routines.

Next, the high-level procedures must be
designed. They take care of the moves by
altering the arrays and calling the low
level paint routines.

The high level procedures are called by
events from mouse or keyboard.
Problem here is, that actions originating
from such events depend on the situation
of the game.
So, together with the data structures, the
game states must be defined:

type =TGameState

(, , gsInitializing gsMenu

gsPlayerMove gsComputermove, ,
gsPlayerWin gsComputerwin gsEnd, ,);

GameState TGameStatevar : ;

gsInitializing during startup of
 game. Initialize tables
 such as clearing the
 moves list.
gsMenu allow for property
 selections between
 games.
gsPlayerMove allow mouse or
 keyboard events to
 define player move.
gsComputerMove block events, while
 computer calculates/
 displays its move.
gsPlayerWin game end by winning
 of player.
gsComputerWin game end by winning
 of computer.
gsEnd game end, board full,
 no winner.
Besides the mouse and keyboard events,
it is convenient to consider the control
buttons as well as events.

type =TGameEvent

(, , , geInitDone geStart geNewGame

gePropertyChange gePlayermoveDone, ,
geComputermovedone);

212

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 60 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
0

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

PAGE 1/3CONTROLLING
YOUR GAME

C
O

N
T
R

O
L
L
I
N

G
 Y

O
U

R
 G

A
M

E

 FILTERING CHARACTERS

Introduction
This chapter describes how to
program character filters, to allow
only a selected set of characters to
enter an Edit component.
Below is a form with two Edit boxes,
one (nameEdit) for entering a name,
a second (pwEdit) for entering
passwords

Below the Edit components, the allowed
characters are listed. For the pwEdit, the
property passwordChar is set to #149
during design time. So each character
entered here will be displayed as a big
dot. Both Edit components are placed on
form1. To be able to inspect a typed
character, the keyPreview property of
the form must be set true.

A typed character generates a
TForm1 FormKeyPress Sender TObject. (: ;

var :)Key Char event.
If the character key is not part of a
predefined set, key is set to #0, character
code 0, which is ignored.

Make sure the character #8 (backspace) is
also allowed, else a backspace in the Edit
box is not possisble.
This is the complete Delphi-7 unit.

unit ;Unit1
interface

uses
 , , ,Windows Messages SysUtils
 , , ,Variants Classes Graphics
 , , , ;Controls Forms Dialogs StdCtrls

type
 = ()TForm1 TFormclass
 : ;nameEdit TEdit
 : ;pwEdit TEdit
 : ;Label1 TLabel
 : ;Label2 TLabel
 : ;Label3 TLabel
 : ;Label4 TLabel
 : ;Label5 TLabel
 (:procedure FormKeyPress Sender
 ; :);TObject Key Charvar
 private
 { Private declarations }
 public
 { Public declarations }
 ;end

var : ;Form1 TForm1

implementation

{$R *.dfm}

 (:);procedure varnamefilter ch char
 begin
 (if not inch
 [.. , .. , .. ,])'0' '9' 'A' 'Z' 'a' 'z' #8
 := ;then ch #0
 ;end

 (:);procedure varpwfilter ch char
 begin
 ([, .. , ,if not inch '!' '#' '&' '*' '-
 ' '/' '0' '9' 'A' 'Z' 'a' 'z' #8, , .. , .. , .. ,])
 := ;then ch #0
 ;end

procedure
TForm1 FormKeyPress Sender TObject. (: ;
 var :);Key Char
 begin
 = if thenactivecontrol nameEdit
 ();namefilter key
 = if thenactivecontrol pwEdit
 ();pwfilter key
 ;end
end.

215

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 61 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
0

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

PAGE 1/1

 F

I
L
T
E
R

I
N

G
 C

H
A

R
A

C
T
E
R

S

You can download the
accompanying files: filter.exe
The complete project and code is
available for download filter.zip

WHILE DO LOOP
TO SEARCH AARRY

Introduction
This chapter presents a simple function
that searches for specific data in an
array.
As an example an array of strings,
representing names, is chosen.
A while ... do ... loop is used.

const 1000 = ;maxname

 : [] ;var array 1.. of stringnames maxname

 : ;namecount word // number of names in array

Function findname compares string s
against the entries in array names.
If s is found, then the index of s is
returned.
If no match is found, 0 is returned.

The function

function string (:) : ;FindName s word

var : ;i word

 : ;hit boolean
begin
 := ;hit false

 := ;i 0

 (=) (<) while and dohit false i namecount
 begin
 ();inc i

 := [] = ;hit names i s

 ;end

 := ;result i

end;

The while..do.. loop repeats as long as no
compare is found and the top of the array
is not reached.
A convenient way of programming is
also having the result of the function
indicate if the search was successful.
The index is returned as a var parameter.

Alternative search function

function var string (: ; :) : ;FindName w word s boolean

 : ;var i word
 begin
 := ;i 1

 (<=) ([] <>) ();while and doi namecount names i s inc i

 := <= ;result i namecount

 := ;if thenresult w i

 ;end

In this case, make sure that in Project
Options/compiler "complete boolean
evaluation" is set false.
So, if (i <= namecount) is false, (names[i]
<> s) comparison will not take place.

If no match is found, i will be incremented
until it is greater than namecount.
A false result is returned.

216

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 62 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
2

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

PAGE 1/1

Data

W
H

I
L
E
 D

O
 L

O
O

P

No code available

STEP BY STEP
PROGRAM EXECUTION

Introduction
In some cases, as in educational
software, it is necessary to execute a
program step-by-step.
A convenient way to advance each
step is by hitting the SPACE bar.
But also it must be possible to
terminate the process and return to
an input mode or whatever. A good
key for this is ESCAPE.

Implementation of both demands requires
two boolean variables.
 1. stopflag booleanvar : ;

stopflag is normally true.

However, hitting the space bar sets
stopflag false, which causes the program
to continue.

 2. runflag booleanvar : ;

runflag is normally true.

Program execution may proceed in this
case.

Hitting ESCAPE clears runflag and the
execution of our process stops.
The program itself does not stop, but only
waits for new commands after skipping
procedures.
A good way to halt program execution is
application.processmessages;

This calls Windows to handle events.

A procedure for the program stop may be

Say we have processes 1..4 to step
through.

The now will look like :program

procedure ;DoJob
begin
 := ;runflag true

 ;process1

 ;programstep

 ;if thenrunflag process2

 ;programstep

 ;if thenrunflag process3

 ;programstep

 ;if thenrunflag process4

 ;programstep

end;

procedure ;programstep
begin
 := ;stopflag true
 while dostopflag
 . ;application processmessages

end;

runflag may also depend on process
results such as error codes. In the case of
errors, the processes that follow will be
skipped if runflag is set false.

A problem is closing the form while
stopped. So, the Close event must set
runflag and stopflag to false, otherwise
the program will not close until finished.

Normally a button press will start the job.
It is convenient to use this button as well
to continue the program when stopped.
The final program (see below) takes care of
that. In a project, events from keyboard
or mouse have a meaning that depends
on the state of the program.
Editing input data, processing data,
waiting for a command.....

Therefore a variable with name such as
programstate is needed. In this simple
case, programstate may be psIdle or
psExecute, to differentiate between
executing and not executing the
processes 1..4.

217

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 63 PASCAL
PROGRAMMING PAGE 1/3

C
H

A
P

T
E
R

 6
3

 P
A

S
C

A
 P

R
O

G
R

A
M

M
I
N

G

S
T
E
P

 B
Y

 S
T
E
P

 P
R

O
G

R
A

M
 E

X
E
C

U
T
I
O

N

HANDLING SERIAL
BIT STREAMS

H
A

N
D

L
I
N

G
 S

E
R

I
A

L
 B

I
T
 S

T
R

E
A

M
S

Operations

Bit strings of varying length are
presented to be stored in a buffer.
Also, bit streams of varying length are to
be extracted from a buffer. The buffer is
an array of dwords (cardinal).
The bit packages are first assembled into
a 32 bit register, called ACCU.
When the accu is full, it is copied to the
buffer and a pointer is updated to
address the next entry in the buffer.
The data flow is illustrated in figure 1.

Figure 1

Acount counts the number of bits present
in the Accu. When accu reaches a count
of 32 (or more) it has to be saved into the
buffer.
In the figure 1, the accu is shown twice
for clarity.

Next page is the procedure for the
storing of bit streams. The buffer is
named "director" , its index is dirPTR.
A dword containing n bits must be stored
(n < 32)

COMPUTER & MATH
 IN GAMES PASCAL
C
G220

CHAPTER 64 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
4

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

Introduction
This chapter decribes the reading and
writing of serial bit streams from/to a
buffer. This problem was part of a
project for image compression...

PAGE 1/2

222

COMPUTER & MATH
 IN GAMES PASCAL
C
G

COLORMIXER
COMPONENT DELPHI

Introduction
Sometimes it is convenient to have a
simple color selector to be placed on
the canvas of a dialog form. The
component presented here is of
moderate size but still capable of
selecting 1 of 256000 colors, because it
is constructed of separate slides for red,
green and blue, each with 64 positions.
Below is a picture of the (colormixer)
component in action

Figure 1

The colormixer class is placed in a
separate unit. Form1 and Unit1 make an
exerciser to test the component. The
mixer only consists of the three vertical
color bars. The other components are part
of the exerciser.

The only property added is "color".
By writing a new value to the color
property, the slides may be preset.
Read the color property to get the
selected color. The color is always in the
Windows format. Each time a bb-gg-rr

slide changes position an event is
generated that presents the new color to
the application.
Each slide has a position of 0 to 63.
Before packing the slide positions into the
32 bits color value, 2 bits of value "1" are
placed behind it to make the

slideposition 8 bits in length. So, the
minimal color value is and $00030303

the highest is $00ffffff

The colormixer component has a fixed
size of 120 * 140 pixels.
Do not set the width or height.

Here you see 4 colormixers in action
(picture 50% reduced) in a dialogform to
select frame properties.

Figure 2:

CHAPTER 65 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
5

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

C
O

L
O

R
M

I
X

E
R

 C
O

M
P

O
N

E
N

T
 D

E
L
P

H
I

PAGE 1/1

You can download the
accompanying files:
colormixer.exe
The complete project and code is
available for download
colormixer.zip

223

COMPUTER & MATH
 IN GAMES PASCAL
C
G

COLORDIALOG FORM
COMPONENT DELPHI

CHAPTER 66 PASCAL
PROGRAMMING PAGE 1/2

Constants and Variables

Figure 1

Color selection takes place by mixing the
colors red, green and blue.

New however is that the last ten
selections are saved. A quick selection of
previously used colors is possible by
simply clicking on the color.

Components

 - Colormixer 3 slides for color
 mixing, my own
 component
 - Showbox paintbox to show the
 mixer color
 - Historybox paintbox with the last
 10 stored selections

const 10 = ;maxhistory

var :colorhistory

 [+] ;array 1.. 1 of maxhistory dword

 : ;hcount byte

Colors have the pf32bit format.
Old selections are stored in array
colorhistory.

hcount is the number of stored colors.

Procedures

A new color is stored in colorhistory[1].
Old colors in the colorhistory are shifted
one place down.

Several cases have to be considered:
1. A first color is added to the
 history.hcount was 0 and is

 increased to 1.

2. Already some colors are in the
 history. All colors are shifted one
 place down, new color in
 colorhistory[1].

 hcount is increased by 1.

Figure 2

C
H

A
P

T
E
R

 6
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

C
O

L
O

R
F
O

R
M

 F
O

R
 D

E
L
P

H
I

INTRODUCTION

On many occasions in programs a
color has to be selected to fill a
shape or draw a line. A convenient
way for selection is a specialized
pop-up form, a so called dialog
form. After the selection the form
closes. This article describes the
programming of such a dialog form.
Below is a real size picture:

 PEG SOLITAIRE

Introduction

Figure 1: Initial board state

Figure 2: Final solution

Peg Solitaire is a single player puzzle.

The board consists of holes (33) and pegs
(initially 32). The center position only is
open. The final, solved, state has left 1 peg
in the center position when 31 moves have
striked the other pegs.
A move takes a peg over its neighbour
(horizontally or vertically) to an empty hole.
The peg that was jumped over is removed
from the game. See the picture below for a
reduced image of an initial- and a solved
game:

Figure 1 shows the original Solitaire
board state and the final state is shown in
Figure 2.
However, I have added several other
starting positions, from easy to difficult.
The final state is always the same: 1 ball
left in the center.

Program Options

play search for solutions
replay replay previous moves
 or solution
search have computer search
 for solutions
place place balls at board to
 create starting position for
 search
select select 1 of 12 preset games,
 from easy to difficult
save save board / solution to
 disk
reload reload game from disk
add to print-queue
 add a solution to the
 print queue
print print previously stored
 solutions
in line help -
P - filter permutation filter removes
 similar solutions : same moves
 in different sequence

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/9

C
H

A
P

T
E
R

 6
7

 P
U

Z
Z

L
E

 P

E
G

 S
O

L
I
T
A

I
R

E

225

CHAPTER 67 PASCAL
PROGRAMMING

C
H

A
P

T
E
R

 6
8

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

 S

H
I
F
T
 C

O
D

E

234

COMPUTER & MATH
 IN GAMES PASCAL
C
G

 SHIFT PUZZLE
CHAPTER 68 PASCAL
PROGRAMMING

PAGE 1/6

Introduction
The SHIFT puzzle is sometimes called
the most difficult puzzle in the world.
Below are reduced pictures of the
SHIFT puzzle in the initial- and in the
final, solved, state.
The puzzle consists of a board with 10
blocks called A..I and X. The goal is to
shift the blocks (which may not
overlap) until the red X-block is in the
center bottom position. At first glance,
this exercise looks impossible.

How to write a program that solves
this puzzle?

Figure 4: Initial state

Figure 5: Solved state

The Brute Force method

In this approach simply all possible
move sequences are tried until the
solution is met. (by accident we may say)
Programming is relatively simple, but for
more difficult puzzles the processing
time will be very long : hours or even
days. The process time may be shortened
by avoiding superfluous moves.
The brute force approach is a good

general starting point to solve puzzles
but ways to speed up the process are
puzzle dependent. In this case of the
SHIFT puzzle we expect many moves
until the solution is met.
Also we note that the number of possible
moves is limited as are the different
board states (the way the blocks occupy the
board).
The first measure to limit processing time
is establishing a maximal allowed
number of moves.
If the last move is tried and there is no
solution, this last move is taken back and
the next sequential move is tried.

Because no pieces (blocks) are removed by
moves, the danger of repeating board
states exists. This situation is avoided by
storing the board states in a buffer.
If a move produces a board state that is
already present in the buffer, the move is
skipped. This is the second measure to
limit processing time.

C
H

A
P

T
E
R

 6
9

 P
A

S
C

A
 P

R
O

G
R

A
M

M
I
N

G

F
R

E
E
H

A
N

D
 D

R
A

W
I
N

G
 D

E
L
P

H
I

240

COMPUTER & MATH
 IN GAMES PASCAL
C
G

FREEHAND
DRAWING DELPHI

CHAPTER 69 PASCAL
PROGRAMMING PAGE 1/3

Introduction
This article describes a Delphi-7
project for freehand drawing
(Figure 1).

Figure 1: Freehand drawing

The drawing is generated by mouse-
movements over a paintbox, connecting
the (x,y) coordinates by lines.

A ColorPicker component is added to

the form as well as an ArrayButton, to

allow selection of pen-color and pen-
width.

Drawing is not too difficult, but we want
to store the drawing as well to be
repainted later. The program allows for
storage of 9 drawings. To verify this
storage, bitbuttons “clear” and “repaint”
are added. “Clear” erases the paintbox
and “repaint” draws all recorded
drawings again. The “backspace” button
removes only the last added drawing.

Coding a drawing

I choose to code a drawing by means of a
step-by-step route description. (figure 2)

Figure 2: A step-by-step route description

Pictured are 3 * 3 pixels. From center (x,y)
a code (0..7) points to the next pixel.
A freehand drawing can be defined by a
list of these codes, given the coördinates
of the starting point.

The code requires 3 bits for each step.
This is far from ideal, because multiples
of 3 bits do not fit bytes or words.
A 4 bit code would be better.
The extra 4th bit provides an extra
possibility, see figure 3:

Figure 3: Extra 4th bit

C
H

A
P

T
E
R

 7
0

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

T
H

E
 X

F
O

N
T
 P

R
O

J
E
C

T
 1

243

COMPUTER & MATH
 IN GAMES PASCAL
C
G

THE XFONT PROJECT
CHAPTER 70 PASCAL
PROGRAMMING

Introduction
The Xfont project allows the creation
of your own font. Xfont project was
started to build a math-font
containing characters of special
operators as of set theory together
with the characters of the Greek
alphabet. To avoid redundant work,
existing images may be used.
These character images may be
altered, new images added and new
character codes may be assigned.

PAGE 1/11

In case of the Xfont a blend is chosen of
the above methods. This method may be
called a "vectorised bitmap". A character
is first pictured in a big , monocolor, 96 *
96 bitmap. By reduction or magnification
the desired fontheight is achieved.
Also, in case of reduction, the character is
displayed with soft edges. With help of
some math, the character may be
pictured in various styles. Only one small
font file is needed and the drawing
process is relatively fast.

Character Layout

Figure 1. below shows the layout of the
96 * 96 bitmap.

Which properties this font should have?
We want the same font for the screen as
well as the printer. Normal height of a
screen character is 16 pixels. For a
printout, having a higher resolution,
 a 3 fold magnification is required, so
normal fontheight here is 48 pixels.
Another requirement is a printout of
double the normal height without any
loss of quality. So, the image should be
defined minimally as a 96 pixel height
image.
 The next question is how to encode
the character images. The most simple
way is a bitmap. The best quality is
achieved by using separate bitmap
images per size and per style.
However, an enormous amount of
storage space is required because each
bitmap also should have its 3 fold
magnified counterpart for printouts.
Handling such an amount of bitmaps is
not very practical. Another way of
encoding is by means of vectors. (a vector
is simply a sequence of numbers which
describe an object). Characters are
decomposed in short lines and ellipse
arcs in this case. Advantage is sharp
character images, even if enlarged where
enlarged bitmaps cause 'steps' in
diagonal lines. The drawing of vectored
fonts is more difficult. Different font files
are needed per style such as italic or
bold. The 'arial' font is organised in this
way.

Figure 1: The layout of the 96 * 96 bitmap

The 'hspace' distance of 12 pixels takes
care of the separation of characters in a
line. Also the textcursor may be parked
here.
Characters rest on the baseline. Room
below the baseline and above A top
provides separation between lines.
The ' - ' sign is positioned on the fraction
line, the ' = ' is centered around it.

C
H

A
P

T
E
R

 7
1

 P
A

S
C

A
 P

R
O

G
R

A
M

M
I
N

G

T
H

E
 X

F
O

N
T
 P

R
O

J
E
C

T
 2

254

COMPUTER & MATH
 IN GAMES PASCAL
C
G

THE XFONT PROJECT 2
CHAPTER 71 PASCAL
PROGRAMMING PAGE 1/5

Introduction
This article describes the XFont class,
an implementation of the previously
described XFont project.
To recall: this project allows home
brew scalable fonts allowing for a
variety of styles. Coding is very
effective. A complete font needs less
than 30 kBytes, including the styles.
Drawing of characters is fast: typical
over 10000 a second when the
character height is 20 or less.

To implement the XFont in
applications, a class is build around it.
Also an exerciser program is designed
to test the properties and methods of
this new class.

This article also describes the exerciser.
The XFont writes characters in a
XBitmap. This is a TBitmap component
with some extra's. The pixelformat is
always 32 bits. But with only small
modifications a "normal" TBitmap may
be used.

XFont class options

• scalable characters, vertical pixel size
 from 10 to 96. Above 96 a loss of
 quality becomes evident.

• selectable font styles

 • bold

 • italic

Figure 1: The XFont Exerciser program.

259

COMPUTER & MATH
 IN GAMES PASCAL
C
G

THE XBITMAP CLASS
CHAPTER 72 PASCAL
PROGRAMMING PAGE 1/6

CREATION AND PIXELFORMAT.

To create a xbitmap:

var : ;myxbitmap TXbitmap
........
begin
 := . ;myxbitmap TXbitmap create
 with domyxbitmap
 begin
 := ;width 600
 := ;height 400
 ;end
.....

Figure 1: Windows vs pf32bit color format

In the pf32bit pixelmode, the position of
the red and blue fields in a 32 bit word
are swapped compared to the Windows
color format. (see figure 1).

To trade the red and blue fields in a 32 bit
word use:
function (:):swapcolor c DWORD
 ;DWORD

where c is the color.
For the xpencolor and xbrushcolor

properties, the Windows format is used
and the RB colorfields are traded
internally. For the xpixel[,] method,

the color is in pf32bit format for speed
purposes. Internally, Xbitmap modifies
pixels using pointers to the pixel location
in memory. Therefore it needs the
pointer to row 0, column 0 and the incre-
ment value of a pointer to the next row.
These values are obtained by method
xadjust when setting width or height,
using the scanline[] property twice.

Loading the Xbitmap from memory:

Do not use the pixelformat property.
Xbitmap only operates in the pf32bit
mode and this is included in the setting
of width and height. The extra properties
and methods are added to the Bitmap
class, not to the canvas.

with do myxbitmap
begin
 ();loadfromfile filename
 ; xadjust //restores the pf32bit property

 ...
end;

C
H

A
P

T
E
R

 7
2

 P
A

P
R

O
G

R
A

M
M

I
N

G

T
H

E
 X

B
I
T
M

A
P

 C
L
A

S
S

Introduction
The Xbitmap class adds following
drawing options to the Bitmap class:
 1. dash-dot lines with a penwidth of
 1 to 32 pixels
 2. lines with arrows at begin,end or
 both (16 arrow types selectable)
 3. 4 levels (0..3) of drawing
 4. xdot[x,y] method for fast drawing
 of dots in selected penwidth
 5. improved stretchdraw method
 6. clipping rectangle
 7. fast direct access to individual
 pixels with the xpixel[] method
 8. floodfill styles of 8 x 8 or 24 x 24
 pixels, 16 styles selectable
 9. modification rectangle:
 the area that changed during
 the last operation

After a loadfromfile, xadjust must be
called to insure that the pixelformat is
pf32bit and to recalculate the pointer to
(0,0) and the row increment value.

NOTE:
Pixels in a (x)bitmap are located in the
computer memory and are therefore not
visible. To make a (x)bitmap visible it has
to be copied to a screen canvas (such as a
paintbox).

MICROSECONDS
COUNTER

CHAPTER 73 PASCAL
PROGRAMMING

Introduction
For time measurements, the Delphi
programmer may use a milliseconds
counter. This counter variable is of
type cardinal and delivers the expired
time in milliseconds since Windows
was activated. (So, it overflows after
49 days).
However, the accuracy is not very
good, because the counter is not
updated every millisecond but much
less.
The following little program shows the
behaviour of the timer:

procedure . (:TForm1 Button1Click Sender

);TObject

var : ;t cardinal
begin
 := ;t gettickcount

 = ;while dogettickcount t

 . :=label1 Caption

 (-);inttostr gettickcount t

end;

In this case, label1 shows mostly a count
of 16 and sometimes a count of 15 which
indicates that the timer value is
incremented only once per 15,xxx
milliseconds. Also, most processes
complete in less than a millisecond so, for
accurate measurement, they have to be
repeated hundreds of times.
The Pentium processor however has a 64
bit counter that is updated every clock
cycle.

The RDTSC instruction (code $0F,$31)
copies bits 0..31 to register EAX and bits
32..63 to register EDX.
This allows for accurate measurements of
short execution times.

Problem however is, that the CPU clock
speed is system dependable.
To calculate elapsed time in
microseconds, first the clock frequency of
the processor must be calculated.

This is accomplished by sampling the
CPU's 64 bit clock register, wait 500
milliseconds using the milliseconds timer,
then sampling the CPU clock counter
again. The difference of the CPU clock
values divided by the elapsed time in

-3milliseconds * 10 makes the clock speed in
MHz (megahertz).Once the clock speed is
set, proces time is calculated by

 • sampling the CPU clock

 • execute the process

 • sample the CPU clock again

 • calculate the difference of the clocks

 • convert this difference to the "double"
 floating point format

 • divide this difference by the
 previously set CPU clock frequency

To implement such time measurements,
two cases must be considered
 1. the Delphi version supports 64 bit
 integers
 2. the Delphi version does not support
 64 bit integers

Support of 64 bit integers
See code listing on the next page.

265

COMPUTER & MATH
 IN GAMES PASCAL
C
G

PAGE 1/6

C
H

A
P

T
E
R

 7
3

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

M
I
C

R
O

S
E
C

O
N

D
S

 C
O

U
N

T
E
R

C
H

A
P

T
E
R

 7
4

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

C
O

L
O

R
 S

E
L
E
C

T
I
O

N
 C

O
M

P
O

N
E
N

T
 D

E
L
P

H
I

271

COMPUTER & MATH
 IN GAMES PASCAL
C
G

COLOR SELECTION
COMPONENT DELPHI

CHAPTER 74 PASCAL
PROGRAMMING

PAGE 1/2

Introduction
The Delphi programming environment
already contains a dialog form for
color selection. In some cases
however, a simple component, not a
pop-up form, for the selection of
colors is needed.

This article describes such a simple
component, which may also be
integrated in complex, home built,
dialog forms. The component source
code is listed and the complete project
may be downloaded.
How the component looks

Figure 1: 8 color mode, horizontal, square = 20*20 pixels

Figure 2: 64 color mode, horizontal, square = 20*20 pixels

Figure 3: 512 color mode, horizontal, square = 10*10 pixels

Ancestor Class

The ancestor class is the
TGraphicControl component, which is

also the ancestor of the Tpaintbox

component. Basically, the davColorBox

is a modified paintbox.

Component Properties

 • direction
 ...horizontal orientationcbHor

 ...vertical orientation cbVert
 • colorDepth

 1 bit per color, cb8

 8 selectable colors
 2 bits per color, cb64

 64 selectable colors
 cb512

 3 bits per color,
 512 selectable colors

 • border

 number of pixels of edges 0...10

 • borderlight

 32 bit integer

 color of top and left edges

 • borderdark

 32 bit integer

 color of bottom
 and right edges
 • csquare

 byte, value 5 .. 40
 edge length of each colored
 square in rectangle

C
H

A
P

T
E
R

 7
5

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

A
R

R
A

Y
B

U
T
T
O

N
 C

O
M

P
O

N
E
N

T
 D

E
L
P

H
I

273

COMPUTER & MATH
 IN GAMES PASCAL
C
G

ARRAYBUTTON
COMPONENT DELPHI

CHAPTER 75 PASCAL
PROGRAMMING

Introduction
Arrays are an efficient way to organize
large amounts of similar data.
A graphic-user-interface uses many
buttons with similar characteristics to
start processes or select modes of
operation.
So, why not organize buttons as
arrays?
This article describes a Delphi Array-
Button Component, which arranges
buttons in a rectangle of columns and
rows.

PAGE 1/3

Characteristics

The component can have a maximum of
48 buttons which may be [0..47]

organized as a single row, single column
or any combination of rows and columns.
All buttons have the same width and
height.

Properties:
btnHeight the height of each button in

 pixels
btnwidth the width of each button in

 pixels
border the border around the total

 panel in pixels
btnEdge the width of the line around

 each button, 1 or 2
btnSpacing the spacing in pixels

 between the buttons
btnShape bs3D(sharp corners) or

 bsFlat(rounded corners)

Button Behaviour
A button can have the status:
stFlat not activated, in rest

stDown pressed by mousebutton or by

 program command
stHI mousepointer moving over button

stHidden button not shown

In addition, a button can operate in the
following modes:
omMom stDown when pressed

 down by mousebutton,
 return to stFlat when
 mousebutton is released.
omPress stDown when pressed

 by mousebutton.
omToggle stDown when pressed

 down by mousebutton,
 released to stFlat by 2nd
 mousebutton press

Each button is assigned to a group, 0..15.
In a group only one button can have the
status stDown. So, pressing a button
releases any stDown button with the same
group number.

Responsibilities

The component takes care of:

• painting edges and background colors

• generating events when the status of a
 button changes
The application programmer should:

• paint the foreground image or caption
 according to button status

Colors

The property "color" is the color of the
border and spacing between the buttons.
Five colors in an
array[bcInactBG..bcLO] of LongInt

are used to indicate the status
of a button.

bcInactBG

background color of inactive (flat) button
bcActiveBG

background color of
active (pressed) button
bcFlat Edge color of flat button

bcHI Edge color when mousepointer

over button
bcLO Edge color of pressed down button

276

COMPUTER & MATH
 IN GAMES PASCAL
C
G

C
H

A
P

T
E
R

 7
6

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

D
R

A
W

I
N

G
 S

P
H

E
R

E
S

 D
E
L
P

H
I

DRAWING SPHERES
DELPHI

CHAPTER 76 PASCAL
PROGRAMMING

PAGE 1/3

Introduction
This article explains how to draw 3D
spheres in the Delphi programming
language. An exerciser program is
provided and also the complete Delphi
project may be downloaded.

Surprisingly, no difficult math is
required: only the Pythagoras lemma
and linear functions are needed.
Some controls, small arrows, are
added to adjust light position and
colors.
The article also describes how these
arrows are programmed and how the
sliding is accomplished. Color
selection is done by 7 speedbuttons,
which are placed in an array and are
created at runtime. Figure.1 below is
a reduced image of the 3D spheres
generator program.

Figure 1: The 3D spheres generator program

The colors

The colors on the sphere change from the
point of highest intensity to the borders.
This suggests the 3 dimensional effect.
It is unnatural to change the colors from,
say, blue to red. Not the color itself
changes but the intensity does.
Therefore, at first, we only define the
intensity, which ranges from 0 (dark) to
255 (bright).

Next , a 3 bit colorcode defines the colors
that participate. colorcode bit -0- enables
red, bit -1- enables green and bit -2-
enables blue. At design time, the color
code is stored in the tag property of the
corresponding speed button (figure 2).

Figure 2: Color code is stored in the tag property

Drawing the sphere

This is done in bitmap Smap. (S - Sphere)

All pixels of the bitmap are addressed
left to right, top to bottom.
For each pixel (x,y) a check is made to
find its position: inside or outside the
circle (Figure 3).

You can download the accompanying files: spheres.exe
The complete project and code is available for download spheres.zip

Figure 3:pixel (x,y) check to find its position

Introcdution
On the web I found the "leap-frog
puzzle" , an educational game for kids.

Two groups of 3 frogs each sit opposite
each other, one empty space between
them. The challenge is to have the frogs
trade positions by selecting smart jumps.

This article describes a computerprogram
that searches for (and finds) solutions.
For a more general approach, the number
of frogs may vary from 2 * 1 to 2 * 10.

I leave it to the reader to draw beautiful
jumping frogs. Instead I focus on the
programming and some math behind. So,
the "left" type frogs I call simply X and
the "right" frogs are named Y.

Figure 1: Leap-frog puzzle

• a X frog only jumps to the
 right

• a Y frog only jumps to
 the left

• a frog jumps to the next
 open field or

• over the next frog to the
 next open field

So a jump is either 1 or 2
fields.
The puzzle is solved when the
board state is Y Y Y - X X X

Coding the game
A position on the board I call a "field".
A field may be empty, occupied by aX- or by
a Y-frog.

This is the starting board state:
X X X - Y Y Y

Figure 2: Situation at game start

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 77 PROGRAMMING LEAP-FROG

The rules for jumping are:

type = (, ,);Tfrog none frogX frogY

 : [] ; var array ofboard Tfrog1..7

//holds the board state

Note: array[1..7] is for 2 * 3 frogs. For k
frogs : array[1..2k+1]

For each field a maximum of one jump is
possible.
However, it is more convenient to define
a jump by the origin- as well as the
destination field.

type record = Tleap

 , : ;org dest byte

//start and end field of frog leap
 ;end

var array of : [] ; leaps Tleap1..20

//all leaps
 : = ; leapNr byte 0

//last leap

Figure 2: Situation at game start

PAGE 1/3

279

C
H

A
P

T
E
R

 7
7

 P
A

S
C

A
L
 P

R
O

G
R

A
M

M
I
N

G

B
I
T
M

A
P

 R
O

T
A

T
I
O

N
 D

E
L
P

H
I

F
L
O

A
T
I
N

G
 P

O
I
N

T
 N

U
M

B
E
R

S
C

H
A

P
T
E
R

 7
8

 I
C

T

FLOATING POINT
NUMBERS

CHAPTER 78 ICT PAGE 1/3

282

COMPUTER & MATH
 IN GAMES PASCAL
C
G

Floating point numbers are numbers
that, other than integers, have a decimal
point. Examples of floating point
numbers are 0.123, 12.09, -431.987

In the "scientific notation", numbers are
normalized to one digit left of the
decimal point. A power of 10 is then
postfixed to maintain the correct value.

- ¹So 0.123 becomes 1.23 *10
¹

 12.09 becomes 1.209 *10
³ -4321.987 becomes -4.321987 *10

In binary, a number in scientific notation
will always have the format

where x...x is called the mantissa, y...y is
called the exponent. The IEEE standard
saves floating point numbers in the
normalized scientific notation.

floating point numbers and shows the
internal bit representation.
Below is a picture of the program:

Introduction
In this article we explore two IEEE
floating point formats implemented by
Intel. The program floatformats accepts

Figure 1: Floating point number 456.321

In the IEEE floating point format, the 1
left of the decimal point is not stored,
but automatically inserted by the
processor.
There are two formats:

 32 bit (short, Delphi name: "single")
 64 bit (long, Delphi name: "double")

Floating point: the scientific notation

32 bit

Figure 2: 32 bit

1.xxxxxxx * 2
yyyy

The decimal point (.) is placed left of M1.
nBit M represents the value

The M bits together are called "mantissa".

Bit 31 is the sign bit of the mantissa.
If "1" the mantissa is negative, if "0" the
mantissa is positive.

2-n

Introduction
This chapter describes my Delphi
project spic for the compression of
pictures.
The images are stored in bitmaps.
From the pixels of this bitmap, spic
generates a file of type .pic which is
much smaller in byte count then the
.bmp file holding the original bitmap.
Well known formats for compressed
images are : .gif , .jpg and .png. Later
in this article I include a comparison of
them with the .pic format.

The algorithm

A bitmap with randomly colored pixels
will be hard to compress. Compression is
possible only if the picture has some
regularity: repeating patterns, areas with
less colors. I tested a lot of methods and
so, in an organic way, the algorithm
evolved that works best for picures like
the naval battle.
Below is a reduced picture of spic at
work:

Figure 1: The naval battle painting was reduced to 16.07%

In general, two type of images may be
distinguished: photographs and
geometric figures. The first category has
fluent colors and no sharp boundaries,
the second have lines and rectangles
filled with a single color. My spic project
is aimed at photographs and paintings.
For geometric pictures other approaches
would yield better results
however, the files are far from bad..pic

Surprisingly enough, only a limited
number of simple commands remained.

Colors

A bitmap in true color format has 24 bit
colors, which are stored in the pf32 bit
format, as seen in figure 2.

C
H

A
P

T
E
R

 7
9

 I
C

T

A
N

 A
L
G

O
R

I
T
H

M
 F

O
R

 I
M

A
G

E
 C

O
M

P
R

E
S

S
I
O

N

PAGE 1/10CHAPTER 79 ICT AN ALGORITHM FOR
IMAGE COMPRESSION

COMPUTER & MATH
 IN GAMES PASCAL
C
G285

E
X

P
O

N
E
N

T
I
A

L
 C

U
R

V
E
 F

I
T
T
I
N

G
C

H
A

P
T
E
R

 8
0

 I
C

T

COMPUTER & MATH
 IN GAMES PASCAL
C
G295

EXPONENTIAL
CURVE FITTING

PAGE 1/6CHAPTER 80 ICT

Introduction
This article describes the exponential
curve fitting method implemented in
Graphics-Explorer,
my equations grapher program.
New is an exerciser program
allowing step by step observation of
the curve fitting process. The curve
fitter calculates the best fitting
exponential function given a set of
points.

This function is
 xy = a.b + c

where a,b,c are called the parameters.

Contents

 - exerciser description
 - curve fitting theory
 - project description

Exerciser description

Figure 1 is a reduced picture of the
exerciser at work.

Figure 1: The Exerciser at work with:

 a,b,c calculated parameters. (black: valid; red: invalid)
 preset params click radio button to preset parameters
 preset x1..x5 click radio button to preset points
 x, y list of points, maximum is 10
 [OK] validate click to check/organize points prior to calculation
 [GO] start calculation of parameters a,b,c
 [] testmode mark to watch step by step calculation

POLYGON TRIANGULATION

Introduction
This article describes how a polygon is
dissected into triangles. Triangulation is
necessary if the polygon has to be colored or
when the area has to be calculated. The
painting or calculations may then be
performed on the individual triangles, instead
of the complete and sometimes complicated
shape of the polygon.
Polygons may appear in different shapes.

Figure 1: Where
 1. is a convex polygon, each angle is
 less than 180 degrees.
 2. has an "inside" angle, bigger than
 180 degrees.
 3. has intersecting edges.

In this application type 3. is illegal. The
program will raise an error message.

Types 1. and 2. , whatever complicated,
can be broken down into triangles.
These individual triangles then may be
colored or the areas may be summed.

A polygon is made up of sequential
points interconnected by lines. There is
an area inside- and an area outside the
polygon. When decomposing the
polygon into triangles, the biggest
problem is to classify an angle as "inside"
or "outside".
In case 1. before, each angle is "outside"
and 3 successive points always are angles
of a triangle which is inside and part of
the polygon. Triangulation may also be
accomplished by drawing lines from one
point to all others.
In the case of polygon 2. however, the
"inside" angle must be recognized to
avoid coloring.

To distinguish "outer"- and "inner" angles
I use some basic vector geometry. The
details will be introduced later in this
chapter

Outer- and Inner angles

A line (edge) has a starting and ending
point. In mathematics it is called a vector,
because more than one number is
required to describe it. See figure 2.
(2 numbers, in 2D geometry).
The next figure shows line l with vector
AB. An arbitrary point on line l may be
characterized by a single number, I call
this factor f. Point A, the starting point,
corresponds with f = 0. Point B, the
ending point, corresponds with f = 1.
Right of B (the forward extension of AB) has
points that correspond to f > 1.
Left of A (the backward extension of AB)
has points that correspond to f < 0..

Figure 2: A line has a starting and ending point

In case of two vectors (red and blue, see
figure 3 on next page) there is an
intersecting point S. Since S is on both the
red and the blue vector, we may calculate
the f values (f1 for red, f2 for blue) for S. f1
and f2 give an indication of the relative
position of the vectors.
Red and blue may be parallel or coincide.
In that case there is no intersection.
A flag fvalid is set false in this case.
Using this vector geometry we are able to
distinguish between inner- and outer
angles in case of simple polygons. Look
at the figure 3: we examine angle B of
figure 4 (mext page).

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 81 ICT

C
H

A
P

T
E
R

 8
1

 I
C

T

PAGE 1/10

P
O

L
Y

G
O

N
 T

R
I
A

N
G

U
L
A

T
I
O

N

301

THE DIRECTION OF A VECTOR

Figure 1

Figure 2

Directions are
 0 right
 90 down
 180 left
 270 up
All measured
in degrees.

We notice
vector AB =
(a,b) and the
tangent equals
tan(x) = b/a

NOTE:
Positive y
direction is
down for
coordinates on
the screen.

Our objective is to calculate x for any
vector.

Tangent

The tan function supplies the ratio b/a

for a given value of angle x.......tan(x) =

b/a. The inverse tangent function

arctan supplies the angle x for a given
value ofb/a x = arctan(b/a)

However, x is in radians.
Knowing that 2*Π radians = 360 degrees,
we simply multiply by 180/p to convert
radians to degrees.
Figure 2 shows the arctan function.
We actually plot () the Graphics-Explorer
equation where x is ratio y = atan(x)

b/a and degrees are selected instead of
radians.
The atan function result ranges from -
90......+90 degrees, which is not what we
want. Also, for straight up or down
vectors where , an exception a = 0

(error) is generated because of division
by zero{ atan(b/0) }

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 82 ICT

C
H

A
P

T
E
R

 8
2

 I
C

T

PAGE 1/2

T
H

E
 D

I
R

E
C

T
I
O

N
 O

F
 A

 V
E
C

T
O

R

311

Introduction

In geometry, a vector is a line from one
point to another in a plane.
This article describes how to obtain the
direction (in degrees) of a vector.
see figure 1 below

Contents

• Introduction
• The game
• Coding the Board and Moves
• What is a node
• Winning and Losing
• Replacing Drabness by Variation
 and Surprise
• Speeding Up
• Shortcut 1
• Shortcut 2
• Rating and Treshold
• Reduced Column testing
• Recognizing previous board states
• The analyse button
• Strategy
• Summary of variables

Introduction
This document describes how my com-
puter program CONNECT4 (version 4.0)
calculates the best move.

My work on CONNECT4 started in 2001.
The first ideas for an algorithm came up
while working on solutions of
Peg-Solitaire.

After the first working example I kept
wondering how to speed up the search
process to look further ahead within
acceptable time and how to make the
computer a more interesting player.
These additions to the basic algorithm
will be described as well.

In the current version 4.0 the search
process has two distinct steps:
1. A qualitative analysis of the board,
 looking just one move ahead.
 This analysis results in a
 recommended move for
2. A quantitative (brute force)
 approach, which tries to find a
 better move than the one
 recommended.

The result of step 1 is influenced by the
selected Strategy.
In step 2, the search depth is 2*level+1.

The Game

Figure 2: A new gameplay

My version of CONNECT4 is single player,
you play against the computer.
The board has 9 columns and 7 rows,
resulting in 63 fields.
Computer and player alternately place a
ball of their color in a field. The computer
always plays with red, the player with
blue. The columns are filled bottom-up, so
the balls are actually dropped down a
column. The winner is the first to achieve a
horizontal,vertical or diagonal line of 4
balls of his color.

Coding the board and moves

The game has 63 fields, each of which can
be can be:
- empty (code 0)
- red (code 1)
- blue (code 2)

Array BORD[1..9,1..7] holds the

boardstate
(BORD is Dutch for board as you guessed).

 places a red ball BORD[2,3] := 1

in column 2, row 3.
 removes the ball BORD[4,7] := 0

of column 4, row 7.

COMPUTER & MATH
 IN GAMES PASCAL
C
G

CHAPTER 83 ICT

C
H

A
P

T
E
R

 8
3

 -
 I

C
T
 -

 A
L
G

O
R

I
T
H

M
S CONNECT 4

C

O
N

N
E
C

T
 4

PAGE 1/9

313

BITMAP RESIZE
ALGORITHM

PAGE 1/7CHAPTER 84 ICT

Figure 2:Pixel data stored in a 32 bit word

Internally, Windows stores the data of
each pixel in a 32 bit word:

Introduction
Information can be stored in an analog or
digital form. The big advantage of digital
storage is the
possibility to
manipulate the data
using mathematical
functions. This article
handles a simple algorithm to resize
(enlarge or reduce) computer pictures.
Data formats and mathematics are
discussed in detail. The Delphi-
implementation and full source-code listing
are also included.

handles a simple algorithm to resize

COMPUTER & MATH
 IN GAMES PASCAL
C
G322

Data formats

A computer picture (or screen) is made up
of dots which are called pixels. A colored
pixel is a mix of three colors: red, green
and blue. See figure 1.
Using realistic colors, the intensity of
each color is a number ranging 0..255.
0 means zero intensity, 255 (or hexadeci-
mal ff) indicates the highest intensity.

This is what a (very enlarged) pixel looks
like:

Figure 1: A very much enlarged pixel

maximum intensity of all three colors
produces white.

The red information is stored in bits 0..7,
green in 8..15, blue in 16..23. Bits 24..31
are not used. A picture is a 2-dimensional
table of pixels.
In Delphi, this table may be part of a
Bitmap component. This component

offers the choice of several data formats
and has procedures to manipulate the
pixels (drawing lines, filling areas, copying
...). Bitmaps may be copied to a
paintbox to be displayed on the screen.

Pixeldata in the bitmap is addressed by
using the [x,y] coordinates.
Image below shows a bitmap with some
coordinates. A pixel is pictured as a
square.

Figure 3

C
H

A
P

T
E
R

 8
4

 I
C

T
B

I
T
M

A
P

 R
E
S

I
Z

E
 A

L
G

O
R

I
T
H

M

Commonly used pixelformats are: 16 bits,
24 bits or 32 bits.

A NON RECURSIVE
FLOODFILL ALGORITHM

Introduction

This is a new floodfill article, including a
much faster exerciser program.
Floodfill is a method to fill a random
shape with a pattern. This floodfill
method is implemented in my TXBitmap
class. TXBitmap is a Bitmap with several
new features such as
 - 4 drawing levels
 - a cliprect
 - 16 floodfill patterns
Using drawing levels, a lower level pen
cannot overwrite a higher level pixel.
The highest level is 0, the lowest is 3.

Figure 1: The floodfill exerciser at work.

Floodfill boundary is formed by pixels
having level 0 or 1 (the 2 highest levels).
Pattern drawing is at level 2. The level of
a pixel is stored in blue bits 0,1.
The cliprect is a rectangle on the screen.
Painting outside the cliprect is not
possible.
The floodfill algorithm here presented is
non recursive. This is an advantage
because, while filling large shapes, stack
boundaries cannot be violated.

Below is a reduced picture of the floodfill
exerciser at work.

COMPUTER & MATH
 IN GAMES PASCAL
C
G329

PAGE 1/4CHAPTER 85 ICT

C
H

A
P

T
E
R

 8
5

 I
C

T
A

 N
O

N
 R

E
C

U
R

S
I
V

E
 F

L
O

O
D

F
I
L
L
 A

L
G

O
R

I
T
H

M

Formula
Translation

Introduction

This article describes the translation of
several types of mathematical equations
into a sequence of basic arithmetic
operations. Such a process is also known
as "parsing" and is necessary when plotting
functions or using them in spreadsheets.
Years ago, I designed the algorithm for my
equations grapher Graphics-Explorer.
(see chapter) 36
However, at a second glance, this Delphi
source code is rather hard to read.

Figure 1: The exerciser, showing the function y = x*sin(3x)

So I have rewritten the code into a more
comprehensible form. The Delphi-7
project consists of 3 units:
• unit1:
 form with buttons, TEdit for
 entering formulas and a paint-
 box to show graphics and tables
• xlate:
 holds the code for the translation
 and the calculations
• eqdrawer:
 holds procedures to draw the
 different type of equations using
 the xlate unit

CHAPTER 86 ICT

C
H

A
P

T
E
R

 8
6

 I
C

T

PAGE 1/10

F
O

R
M

U
L
A

 T
R

A
N

S
L
A

T
I
O

N

COMPUTER & MATH
 IN GAMES PASCAL
C
G333

E
Q

U
A

T
I
O

N
 G

R
A

P
H

E
R

 D
E
S

C
R

I
P

T
I
O

N

COMPUTER & MATH
 IN GAMES PASCAL
C
G343

Below I discuss the drawing procedure
per function type. Refer to the
eqdrawer source code for more

details.

Type1 functions {y =x........}

Variable is incremented from 0 to 639.i

i x is converted to a value by calling

pix2x(i). setX(x)Then sets x and

calculate () is called to calculate y. valid

y := getY yields the calculated value of

y. Counter represents the vcount

number of valid points received.
It counts 0,1,2,2,2... At value 1, a
moveto(i, y2pix(y)) takes place, at

vcount = 2 lineto(i, y2pix(y)) a

takes place. If , valid = false vcount

is reset to zero. Also a check is made for
the difference of two consecutive y
values: if too large, painting is suppres-
sed. This avoids painting asymptotes as
in y = tan(x).

This asymptote suppression is somewhat
primitive, more sofisticated but more
complicated procedures are possible.

Type2 functions {x =y........}

Basically the plotting is the same as for
type1, but x and y are traded.

EQUATION GRAPHER
DESCRIPTION

CHAPTER 87 ICT PAGE 1/2

Supporting functions

function (:): ;y2pix y double longInt
// convert y double value to screen
pixel position

function (:): ;x2pix x double longInt
// convert x double to screen pixel position

function (:): ;pix2x p longInt double
// convert screen pixel x position to x coordinate

function (:): ;pix2y p longInt double
// convert screen pixel y position to

Introduction
In a previous chapter „formula
translation“ I discussed how functions
or equations are dissected into basic
arithmetic operations allowing the
value to be calculated.
The result was the Director Table,
which is a list of basic arithmetic
operations sorted from high to low
priority. To plot the functions I
included unit eqdrawer and its code is
described below.

NOTE:
 - a has the form formula ... x ... y ...

 where and are and x y variables

 are operators

 - an has the form equation
 x....y =x.....y

 - a has the form function
 y =x......

So, a function is a special form of an
equation. Functions are used widely
because, yielding only one result, they
may be used in formulas.
An example is y = 3sin(x)

In the fxlate project, 4 type of functions or
equations are supported. The options to
draw the graph are intentionally kept
very simple because the only purpose
here is to illustrate the proper translation.
The coordinate system is in paintbox1 on
form 1, the size is 640 * 480 pixels. The
origin of the coordinate system is at pixel
position (320,240). The domain of x is -8 ...
+ 8, the domain of y is -6...+6. The scale is
fixed to 40 pixels per cm. In general,
equation plotting is calculating
consecutive (x,y) number pairs and
connecting them by straight lines. Keep
in mind, that certain values of x, y result
in arithmetic errors if we try to calulate
the square root or logarithm of a negative
number or if we divide by zero.
The calculate(var OK : boolean)

procedure will set OK to false in this case
and the plotting software must act
accordingly.

C
H

A
P

T
E
R

 8
7

 I
C

T

