Explanation of the program “Overlap”

Page 1:

Definitions of datastructures

Page 2:

Variables and lists

function PolyArea : calculate area of “Poly”

function “TestConvex” presents “true” if polygon is convex.

Page 3:

function “Overlap” calculates area of polygon overlap.(polygons pA and pB)

procedure “makeEdgelist” uses Apoints or Bpoints to make an Edge-list.

(Aedge or Bedge).

Procedure “makeIntersections” uses Edgelists to built ISlist with fa and fb values.

Acount and Bcount are the number of angles.

Remark : index i is used for A , j is used for B polygon.

Page 4:

procedure “makeIPlist” uses ISlist to make the IPlist.

Page 5:

variable “poscode” contains, bitwise coded, the relative position of two edges:

· bit 0 = 1 if (0 < fb < 1) en (fa > 1) extension of blue intersects red

· bit 1 = 1 if (0 <fb <1) en (0 < fa < 1) intersecting edges

· Bit 2 = 1 als (0 < fb < 1) en (fa < 0) reverse extension of blue intersects red

Page 6:

procedure “makeTracklist”, uses the Iplist to built the Tracklist.

procedure “makePolylist” , makes the Polylist from the Tracklist.

Search a path , connecting the points of the overlapping polygon.

Edges are coded bitwise in variable Ematch, using bias value of 12 for red points.

Ematch bit i = 1 if point is on edge i of polygon A .

Ematch bit i + 12 = 1 if point is on edge i of red polygon.

Page 7:

procedure “PaintPolylist” paints the polygon in map2 (not defined in this unit)

Procedures “XtoPixel” and “YtoPixel” calculate pixelcoordinates for the bitmap.

These procedures are part of the “Param” unit.(not shown here)

Procedure “CalcArea” calculates the area of the polygon in list Polylist.

Procedure “AddTrackPoint” adds point of IPlist to the “TrackList”, if not already present.

Page 8:

function “Polydistance” calculates the distance of points po[i] en po[j] of polygon po.

Function “distance” calculates the distance between points i en j of the Polylist.

Using the OvUnit.

Step 1:

Add coordinates of polygon angles in list Apoints. Set “angles” to number of angles.

Repeat for second polygon, use Bpoints.

Step2 :

Test polygons to be convex. Call the “testconvex” function.

AposOk := TestConvex(Apoints); //AposOk = “true” if polygon is convex

 BposOk := TestConvex(BPoints);

step 3:

calculate overlap area :

if AposOK and BposOK then area := overlap(APoints,BPoints);

real variabele “area” now contains the final result.

